Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску

Доказательство Уайлса Великой теоремы Ферма является доказательством британского математика Эндрю Уайлса частного случая теоремы модульности для эллиптических кривых . Вместе с теоремой Рибета она обеспечивает доказательство Великой теоремы Ферма . И Великая теорема Ферма, и теорема о модульности почти повсеместно считались недоступными для доказательства современными математиками, а это означало, что их невозможно было доказать, используя современные знания. [1] : 203–205, 223, 226.

Впервые Уайлс объявил о своем доказательстве 23 июня 1993 года на лекции в Кембридже под названием «Модульные формы, эллиптические кривые и представления Галуа». [2] Однако в сентябре 1993 г. в доказательстве была обнаружена ошибка. Год спустя, 19 сентября 1994 года, в то, что он назвал бы «самым важным моментом [его] трудовой жизни», Уайлс наткнулся на откровение, которое позволило ему исправить доказательство к удовлетворению математического сообщества. Исправленное доказательство было опубликовано в 1995 г. [3]

Доказательство Уайлса использует многие приемы из алгебраической геометрии и теории чисел и имеет много ответвлений в этих областях математики. Он также использует стандартные конструкции современной алгебраической геометрии, такие как категории из схем и теория Ивасавы , и другие методы двадцатого века , которые не были доступны для Ферма.

Вместе две статьи, содержащие доказательство, занимают 129 страниц [4] [5] и занимают более семи лет исследовательского времени Уайлса. Джон Коутс назвал это доказательство одним из высших достижений теории чисел, а Джон Конвей назвал его «доказательством [20-го] века». [6] Путь Уайлса к доказательству Великой теоремы Ферма, путем доказательства теоремы модульности для частного случая полустабильных эллиптических кривых , установил мощные методы подъема модульности и открыл совершенно новые подходы к множеству других проблем. За доказательство Великой теоремы Ферма он был посвящен в рыцари и получил другие награды, такие как Премия 2016 года.Абелевская премия . Объявив о том, что Уайлс получил премию Абеля, Норвежская академия наук и литературы назвала его достижение «потрясающим доказательством». [3]

Предшественники доказательства Уайлса [ править ]

Великая теорема Ферма и прогресс до 1980 г. [ править ]

Последняя теорема Ферма , сформулированная в 1637 году, утверждает, что никакие три различных положительных целых числа a , b и c не могут удовлетворять уравнению

если n - целое число больше двух ( n > 2).

Со временем это простое утверждение стало одним из самых известных недоказанных заявлений в математике. Между его публикацией и окончательным решением Эндрю Уайлса более 350 лет спустя многие математики и любители пытались доказать это утверждение либо для всех значений n> 2, либо для конкретных случаев. Это стимулировало развитие совершенно новых областей теории чисел . В конечном итоге были найдены доказательства для всех значений n примерно до 4 миллионов, сначала вручную, а затем с помощью компьютера. Однако не было найдено ни общего доказательства, которое было бы справедливо для всех возможных значений n , ни даже намека на то, как такое доказательство может быть предпринято.

Гипотеза Таниямы – Шимуры – Вейля [ править ]

Помимо всего, что связано с Великой теоремой Ферма, в 1950-х и 1960-х годах японский математик Горо Шимура , опираясь на идеи, сформулированные Ютакой Таниямой , предположил, что между эллиптическими кривыми и модулярными формами может существовать связь . Это были математические объекты, связь между которыми неизвестна. Танияма и Шимура задались вопросом, были ли, неизвестные математикам, два вида объектов на самом деле идентичными математическими объектами, просто видимыми по-разному.

Они предположили, что любая рациональная эллиптическая кривая также модулярна . Это стало известно как гипотеза Таниямы-Шимуры. На Западе эта гипотеза стала хорошо известна благодаря статье Андре Вейля 1967 года , которая представила ее концептуальные доказательства; поэтому ее иногда называют гипотезой Таниямы – Шимуры – Вейля.

Примерно к 1980 году было накоплено много свидетельств, позволяющих сформировать предположения об эллиптических кривых, и было написано много статей, в которых изучались последствия, если предположение было верным, но сама гипотеза была недоказанной и обычно считалась недоступной, то есть математики верили в доказательство. предположения было, вероятно, невозможно, используя современные знания.

На протяжении десятилетий эта гипотеза оставалась важной, но нерешенной проблемой математики. Примерно через 50 лет после первого предложения гипотеза была окончательно доказана и переименована в теорему модульности , во многом благодаря работе Эндрю Уайлса, описанной ниже.

Кривая Фрея [ править ]

Еще одна отдельная ветвь развития: в конце 1960-х Ив Хеллегуарх придумал идею связать гипотетические решения ( a , b , c ) уравнения Ферма с совершенно другим математическим объектом: эллиптической кривой. [7] Кривая состоит из всех точек на плоскости, координаты ( xy ) которых удовлетворяют соотношению

Такая эллиптическая кривая будет обладать очень особыми свойствами из-за появления в ее уравнении больших степеней целых чисел и того факта, что a n  +  b n = c n также будет n- й степенью.

В 1982–1985 годах Герхард Фрей обратил внимание на необычные свойства этой самой кривой, которая теперь называется кривой Фрея . Он показал, что кривая вполне могла связать Ферма и Танияму, поскольку любой контрпример к Великой теореме Ферма, вероятно, также подразумевал бы существование эллиптической кривой, не являющейся модульной . Фрей показал, что есть веские основания полагать, что любой набор чисел ( a , b , c , n), способную опровергнуть Великую теорему Ферма, вероятно, также можно было бы использовать для опровержения гипотезы Таниямы – Шимуры – Вейля. Следовательно, если бы гипотеза Таниямы – Шимуры – Вейля была верной, не могло бы существовать никакого набора чисел, способных опровергнуть Ферма, поэтому Великая теорема Ферма также должна была бы быть верной.

Математически гипотеза гласит, что каждую эллиптическую кривую с рациональными коэффициентами можно построить совершенно по-другому, не задав ее уравнение, а используя модульные функции для параметризации координат x и y точек на ней. Таким образом, согласно гипотезе, любая эллиптическая кривая над Q должна быть модульной эллиптической кривой , но если решение уравнения Ферма с ненулевыми a , b , c и nбольше 2, соответствующая кривая не будет модульной, что приведет к противоречию. Если бы связь, указанная Фреем, могла быть доказана, то это, в свою очередь, означало бы, что доказательство или опровержение либо Великой теоремы Ферма, либо гипотезы Таниямы – Шимуры – Вейля одновременно доказывало или опровергало другую. [8]

Теорема Рибета [ править ]

Чтобы завершить эту ссылку, необходимо было показать, что интуиция Фрея верна: кривая Фрея, если она существует, не может быть модульной. В 1985 году Жан-Пьер Серр представил частичное доказательство того, что кривая Фрея не может быть модульной. Серр не представил полного доказательства своего предложения; недостающая часть (которую Серр заметил в начале [9] : 1 ) стала известна как эпсилон-гипотеза или ε-гипотеза (теперь известная как теорема Рибета ). Главный интерес Серра заключался в еще более амбициозной гипотезе - гипотезе Серра о модулярных представлениях Галуа., что подразумевает гипотезу Таниямы – Шимуры – Вейля. Однако его частичное доказательство было близко к подтверждению связи между Ферма и Таниямой.

Летом 1986 года Кену Рибету удалось доказать эпсилон-гипотезу, теперь известную как теорема Рибета . Его статья была опубликована в 1990 году. При этом Рибет наконец доказал связь между двумя теоремами, подтвердив, как предположил Фрей, что доказательство гипотезы Таниямы – Шимуры – Вейля для типов эллиптических кривых, которые идентифицировал Фрей, вместе с теоремой Рибета, также доказал бы Великую теорему Ферма.

С математической точки зрения теорема Рибета показала, что если представление Галуа, связанное с эллиптической кривой, имеет определенные свойства (которыми обладает кривая Фрея), то эта кривая не может быть модульной в том смысле, что не может существовать модульная форма, которая дает начало той же самой кривой. Представление Галуа. [10]

Ситуация до доказательства Уайлса [ править ]

После развития, связанного с кривой Фрея и ее связью как с Ферма, так и с Таниямой, доказательство Великой теоремы Ферма будет следовать из доказательства гипотезы Таниямы-Шимуры-Вейля - или, по крайней мере, доказательства гипотезы для типов эллиптические кривые, которые включали уравнение Фрея (известные как полустабильные эллиптические кривые ).

  • Исходя из теоремы Рибета и кривой Фрея, любые 4 числа, которые можно использовать для опровержения Великой теоремы Ферма, также можно использовать для создания полустабильной эллиптической кривой («кривой Фрея»), которая никогда не может быть модульной;
  • Но если гипотеза Таниямы – Шимуры – Вейля верна и для полустабильных эллиптических кривых, то по определению каждая существующая кривая Фрея должна быть модулярной.
  • Противоречие могло иметь только один ответ : если бы теорема Рибета и гипотеза Таниямы – Шимуры – Вейля для полустабильных кривых были верны, то это означало бы, что не может быть никаких решений уравнения Ферма, потому что тогда не было бы вообще никаких кривых Фрея. , что означает отсутствие противоречий. Это окончательно доказало бы Великую теорему Ферма.

Однако, несмотря на прогресс, достигнутый Серром и Рибетом, этот подход к Ферма также широко считался непригодным для использования, поскольку почти все математики считали гипотезу Таниямы – Шимуры – Вейля совершенно недоступной для доказательства с текущими знаниями. [1] : 203–205, 223, 226 Например, бывший руководитель Уайлса Джон Коутс заявил, что это казалось «невозможно на самом деле доказать», [1] : 226 и Кен Рибет считал себя «одним из подавляющего большинства людей, которые считал [это] совершенно недоступным ». [1] : 223

Эндрю Уайлс [ править ]

Услышав в 1986 году доказательство эпсилон-гипотезы Рибетом, английский математик Эндрю Уайлс, который изучал эллиптические кривые и в детстве увлекался Ферма, решил начать тайную работу над доказательством гипотезы Таниямы-Шимуры-Вейля, поскольку теперь это было так. профессионально оправдано, [11] а также из-за заманчивой цели доказать столь давнюю проблему.

Позже Рибет прокомментировал, что «Эндрю Уайлс был, вероятно, одним из немногих людей на земле, у которых хватило смелости мечтать о том, что вы действительно можете пойти и доказать [это]». [1] : 223

Объявление и последующие разработки [ править ]

Первоначально Уайлс представил свое доказательство в 1993 году. В конечном итоге оно было признано правильным и опубликовано в 1995 году после исправления небольшой ошибки в одной части его оригинальной статьи. Его работа была расширена до полного доказательства теоремы модульности в течение следующих шести лет другими, которые основывались на работе Уайлса.

Объявление и окончательное доказательство (1993–1995) [ править ]

21–23 июня 1993 г. Уайлс объявил и представил свое доказательство гипотезы Таниямы – Шимуры для полустабильных эллиптических кривых и, следовательно, Великой теоремы Ферма, в ходе трех лекций, прочитанных в Институте математических наук Исаака Ньютона в Кембридже, Англия. . [2] Впоследствии это было относительно широко освещено в прессе. [12]

После объявления, Ник Кац был назначен в качестве одного из судей к рецензия рукописи Уайлс в. В ходе обзора он задал Уайлсу ряд уточняющих вопросов, которые заставили Уайлса признать, что в доказательстве есть пробел. Была ошибка в одной критической части доказательства , который дал оценку для порядка определенной группы: системы Эйлера используется для расширения Колывагина и FLACH метода «ы был неполным. Ошибка не сделала бы его работу бесполезной - каждая часть работы Уайлса была очень значимой и новаторской сама по себе, как и многие разработки и методы, которые он создал в ходе своей работы, и только одна часть была затронута. [1] :289, 296–297 Однако без доказательства этой части не было бы фактического доказательства Великой теоремы Ферма.

Уайлс потратил почти год, пытаясь восстановить свое доказательство, сначала сам, а затем в сотрудничестве со своим бывшим учеником Ричардом Тейлором , но безуспешно. [13] [14] [15] К концу 1993 года распространились слухи, что при тщательной проверке доказательство Уайлса не удалось, но насколько серьезно, было неизвестно. Математики начали оказывать давление на Уайлса, чтобы тот раскрыл его работу, независимо от того, завершена она или нет, чтобы более широкое сообщество могло исследовать и использовать все, что ему удалось сделать. Проблема, которая изначально казалась незначительной, не была устранена, а теперь казалась очень значительной, гораздо более серьезной и менее легкой для решения. [16]

Уайлс заявляет, что утром 19 сентября 1994 года он был на грани отказа и почти смирился с тем, что он потерпел неудачу, и с публикацией своей работы, чтобы другие могли использовать ее и найти ошибку. Он заявляет, что в последний раз пытался понять фундаментальные причины, по которым его подход не мог работать, когда он внезапно понял, что конкретная причина, по которой подход Колывагина-Флаха не будет работать напрямую, также означает, что его Первоначальная попытка использовать теорию Ивасавы могла бы сработать, если бы он усилил ее, используя опыт, полученный с тех пор в рамках подхода Колывагина – Флаха. Каждый из них сам по себе был неадекватным, но исправление одного подхода с помощью инструментов другого решило бы проблему и создаст формулу номера класса.(CNF) действителен для всех случаев, которые еще не были подтверждены его рецензируемой статьей: [13] [17]

Я сидел за своим столом и изучал метод Колывагина – Флаха. Не то чтобы я верил, что смогу заставить это работать, но я думал, что, по крайней мере, смогу объяснить, почему это не сработало. Внезапно я получил это невероятное откровение. Я понял, что метод Колывагина – Флаха не работает, но это все, что мне нужно, чтобы моя оригинальная теория Ивасавы работала тремя годами ранее. Так из пепла Колывагина – Флаха, казалось, возник истинный ответ на проблему. Это было так неописуемо красиво; это было так просто и так элегантно. Я не мог понять, как я это пропустил, и двадцать минут смотрел на него с недоверием. Затем в течение дня я ходил по отделению и возвращался к своему столу, чтобы посмотреть, там ли он еще. Он все еще был там. Я не мог сдерживаться, я был так взволнован.Это был самый важный момент в моей трудовой жизни. Ничто из того, что я когда-либо делаю снова, не будет значить так много.

-  Эндрю Уайлс, цитирует Саймона Сингха [18]

6 октября Уайлс попросил трех коллег (включая Фалтингса) просмотреть его новое доказательство [19], а 24 октября 1994 года Уайлс представил две рукописи: «Модульные эллиптические кривые и Великая теорема Ферма» [4] и «Теоретико-кольцевые свойства некоторых Гекке». алгебры » [5], вторая из которых Уайлс написал вместе с Тейлором и доказал, что выполняются определенные условия, необходимые для обоснования исправленного шага в основной статье.

Эти две статьи были проверены и, наконец, опубликованы в майском выпуске Annals of Mathematics за 1995 год . Новое доказательство было широко проанализировано и было признано, вероятно, правильным в своих основных компонентах. [6] [10] [11] Эти работы установили теорему модульности для полустабильных эллиптических кривых, последний шаг в доказательстве Великой теоремы Ферма спустя 358 лет после того, как она была высказана.

Последующие события [ править ]

Ферма утверждал, что «... обнаружил поистине чудесное доказательство этого, которое на этом поле слишком мало, чтобы вместить его». [20] [21] Доказательство Уайлса очень сложное и включает в себя работу такого количества других специалистов, что в 1994 году было высказано предположение, что лишь небольшое количество людей было способно полностью понять в то время все детали того, что он сделал. . [2] [22] Сложность доказательства Уайлса побудила провести 10-дневную конференцию в Бостонском университете ; Созданный в результате сборник материалов конференции призван сделать доступным весь спектр необходимых тем для аспирантов по теории чисел. [9]

Как отмечалось выше, Уайлс доказал гипотезу Таниямы – Шимуры – Вейля для частного случая полустабильных эллиптических кривых, а не для всех эллиптических кривых. В последующие годы Кристоф Брей , Брайан Конрад , Фред Даймонд и Ричард Тейлор (иногда сокращенно BCDT) продолжили работу, в конечном итоге доказав гипотезу Таниямы – Шимуры – Вейля для всех эллиптических кривых в статье 2001 года. [23] Теперь доказанная гипотеза стала известна как теорема модулярности .

В 2005 году голландский ученый-компьютерщик Ян Бергстра поставил задачу формализовать доказательство Уайлса таким образом, чтобы его можно было проверить на компьютере . [24]

Резюме доказательства Уайлса [ править ]

Уайлс использовал доказательство от противоречия , в котором предполагается противоположное тому, что должно быть доказано, и показывает, что если бы это было правдой, это привело бы к противоречию. Противоречие показывает, что предположение должно было быть неверным.

Доказательство делится примерно на две части. В первой части Уайлс доказывает общий результат о « подъемах », известный как «теорема модулярности о подъеме». Эта первая часть позволяет ему доказывать результаты об эллиптических кривых, преобразовывая их в задачи о представлениях Галуа эллиптических кривых. Затем он использует этот результат, чтобы доказать, что все полустабильные кривые модулярны, доказывая, что представления Галуа этих кривых модульны.

Математические детали доказательства Уайлса [ править ]

Обзор [ править ]

Уайлс решил попытаться сопоставить эллиптические кривые счетному набору модульных форм. Он обнаружил, что этот прямой подход не работает, поэтому он преобразовал проблему, вместо этого сопоставив представления Галуа эллиптических кривых с модульными формами. Уайлс обозначает это сопоставление (или отображение), которое, более конкретно, является гомоморфизмом колец :

является деформационным кольцом и является кольцом Гекке .

Wiles had the insight that in many cases this ring homomorphism could be a ring isomorphism (Conjecture 2.16 in Chapter 2, §3 of the 1995 paper[4]). He realised that the map between and is an isomorphism if and only if two abelian groups occurring in the theory are finite and have the same cardinality. This is sometimes referred to as the "numerical criterion". Given this result, Fermat's Last Theorem is reduced to the statement that two groups have the same order. Much of the text of the proof leads into topics and theorems related to ring theory and commutation theory. Wiles's goal was to verify that the map is an isomorphism and ultimately that . In treating deformations, Wiles defined four cases, with the flat deformation case requiring more effort to prove and treated in a separate article in the same volume entitled "Ring-theoretic properties of certain Hecke algebras".

Gerd Faltings, in his bulletin, gives the following commutative diagram (p. 745):

or ultimately that , indicating a complete intersection. Since Wiles could not show that directly, he did so through and via lifts.

Чтобы выполнить это сопоставление, Уайлсу пришлось создать формулу номера класса (CNF). Сначала он попытался использовать горизонтальную теорию Ивасавы, но в этой части его работы была нерешенная проблема, так что он не смог создать CNF. В конце лета 1991 года он узнал о системе Эйлера, недавно разработанной Виктором Колывагиным и Матиасом Флаком, которая казалась «сделанной на заказ» для индуктивной части его доказательства, которую можно было использовать для создания CNF, и поэтому Уайлс установил его работа Ивасавы была отложена, и вместо этого он начал работать над расширением работ Колывагина и Флэха, чтобы создать CNF, которая потребовалась бы его доказательству. [25] By the spring of 1993, his work had covered all but a few families of elliptic curves, and in early 1993, Wiles was confident enough of his nearing success to let one trusted colleague into his secret. Since his work relied extensively on using the Kolyvagin–Flach approach, which was new to mathematics and to Wiles, and which he had also extended, in January 1993 he asked his Princeton colleague, Nick Katz, to help him review his work for subtle errors. Their conclusion at the time was that the techniques Wiles used seemed to work correctly.[1]:261–265[26]

Позже выяснилось, что использование Уайлсом теории Колывагина-Флаха стало точкой отказа в первоначальном представлении доказательств, и в конечном итоге ему пришлось вернуться к теории Ивасавы и сотрудничеству с Ричардом Тейлором, чтобы исправить это. В мае 1993 года, читая статью Мазура, Уайлс понял, что переключатель 3/5 решит последние проблемы и затем покроет все эллиптические кривые.

Общий подход и стратегия [ править ]

Для эллиптической кривой E над полем рациональных чисел Q для любой степени простого числа существует гомоморфизм из абсолютной группы Галуа

к

the group of invertible 2 by 2 matrices whose entries are integers modulo . This is because , the points of E over , form an abelian group, on which acts; the subgroup of elements x such that is just , and an automorphism of this group is a matrix of the type described.

Less obvious is that given a modular form of a certain special type, a Hecke eigenform with eigenvalues in Q, one also gets a homomorphism from the absolute Galois group

Это восходит к Эйхлеру и Шимуре. Идея состоит в том, что группа Галуа действует сначала на модулярной кривой, на которой определена модулярная форма, затем на якобиевом многообразии кривой и, наконец, на точках степенного порядка на этом якобиане. Результирующее представление обычно не является двумерным, но операторы Гекке вырезают двумерный кусок. Легко показать, что эти представления происходят от некоторой эллиптической кривой, но обратное утверждение доказать трудно.

Instead of trying to go directly from the elliptic curve to the modular form, one can first pass to the representation for some and n, and from that to the modular form. In the case  = 3 and n = 1, results of the Langlands–Tunnell theorem show that the representation of any elliptic curve over Q comes from a modular form. The basic strategy is to use induction on n to show that this is true for  = 3 and any n, that ultimately there is a single modular form that works for all n. To do this, one uses a counting argument, comparing the number of ways in which one can поднять представление Галуа до и количество способов, которыми можно поднять модульную форму. Существенным моментом является наложение достаточного набора условий на представление Галуа; в противном случае будет слишком много лифтов, и большинство из них не будет модульным. Эти условия должны выполняться для представлений, исходящих из модульных форм и представлений, исходящих из эллиптических кривых.

3-5 трюков [ править ]

Если исходное представление имеет слишком маленькое изображение, возникают проблемы с аргументом подъема, и в этом случае есть последний трюк, который с тех пор изучался в более общих чертах в последующей работе над гипотезой модулярности Серра . Идея предполагает взаимодействие между и представлениями. В частности, если представление Галуа по модулю 5, ассоциированное с полустабильной эллиптической кривой E над Q , неприводимо, то существует другая полустабильная эллиптическая кривая E ' над Q такая, что связанное с ней представление Галуа по модулю 5 изоморфно и such that its associated mod-3 Galois representation is irreducible (and therefore modular by Langlands–Tunnell).[27]

Structure of Wiles's proof[edit]

In his 108-page article published in 1995, Wiles divides the subject matter up into the following chapters (preceded here by page numbers):

Introduction
443
Chapter 1
455 1. Deformations of Galois representations
472 2. Some computations of cohomology groups
475 3. Some results on subgroups of GL2(k)
Chapter 2
479 1. The Gorenstein property
489 2. Congruences between Hecke rings
503 3. The main conjectures
Chapter 3
517 Estimates for the Selmer group
Chapter 4
525 1. Обычный футляр CM
533 2. Расчет η
Глава 5
541 Приложение к эллиптическим кривым
Приложение
545 Кольца Горенштейна и локальные полные пересечения

Впоследствии Герд Фалтингс внес некоторые упрощения в доказательство 1995 года, прежде всего в переходе от геометрических конструкций к более простым алгебраическим конструкциям. [19] [28] Книга Корнельской конференции также содержала упрощения к исходному доказательству. [9]

Обзоры, имеющиеся в литературе [ править ]

Статья Уайлса занимает более 100 страниц и часто использует специальные символы и обозначения теории групп , алгебраической геометрии , коммутативной алгебры и теории Галуа . Математики, которые помогли заложить основу для Уайлса, часто создавали новые специализированные концепции и технический жаргон .

Среди вводных презентаций есть электронное письмо, которое Рибет отправил в 1993 году; [29] [30] Быстрый обзор проблем верхнего уровня, сделанный Хесселинком, который дает только элементарную алгебру и избегает абстрактной алгебры; [24] или веб-страницу Дэйни, на которой представлены его собственные заметки и перечислены книги, доступные на данный момент по этой теме. Уэстон пытается составить удобную карту некоторых взаимоотношений между испытуемыми. [31] Статья FQ Gouvêa 1994 г. «Удивительное доказательство», в которой рассматриваются некоторые из требуемых тем, получила награду Лестера Р. Форда от Математической ассоциации Америки . [32] [33]5-страничный технический бюллетень Faltings по этому вопросу - это быстрый технический обзор доказательства для неспециалистов. [34] Тем, кто ищет коммерчески доступную книгу, он рекомендовал тем, кто знаком с абстрактной алгеброй, прочитать Хеллегуарха, а затем прочитать книгу Корнелла [9], которая, как утверждается, доступна «аспиранту по теории чисел. ". Книга Корнелла не охватывает всего доказательства Уайлса. [12]

Ссылки [ править ]

  1. ^ a b c d e f g Последняя теорема Ферма, Саймон Сингх, 1997, ISBN  1-85702-521-0
  2. ^ a b c Колата, Джина (24 июня 1993 г.). «Наконец-то крик« Эврика! » В вековой математической тайне » . Нью-Йорк Таймс . Проверено 21 января 2013 года .
  3. ^ a b c «Премия Абеля 2016» . Норвежская академия наук и литературы . 2016 . Проверено 29 июня 2017 года .
  4. ^ a b c Уайлс, Эндрю (1995). «Модульные эллиптические кривые и Последняя теорема Ферма». Анналы математики . 141 (3): 443–551. CiteSeerX 10.1.1.169.9076 . DOI : 10.2307 / 2118559 . JSTOR 2118559 . OCLC 37032255 .   
  5. ^ a b Тейлор Р. , Уайлс А. (1995). "Теоретико-кольцевые свойства некоторых алгебр Гекке" . Анналы математики . 141 (3): 553–572. CiteSeerX 10.1.1.128.531 . DOI : 10.2307 / 2118560 . JSTOR 2118560 . OCLC 37032255 . Архивировано из оригинального 27 ноября 2001 года.   
  6. ^ a b "NOVA - Стенограммы - Доказательство - PBS" . PBS . Сентябрь 2006 . Проверено 29 июня 2017 года .
  7. ^ Hellegouarch, Ив (2001). Приглашение к математике Ферма – Уайлса . Академическая пресса. ISBN 978-0-12-339251-0.
  8. Singh, стр. 194–198; Aczel, стр. 109–114.
  9. ^ a b c d Г. Корнелл, Дж. Сильверман и Г. Стивенс, Модульные формы и Последняя теорема Ферма , ISBN 0-387-94609-8 
  10. ^ a b Дэйни, Чарльз (13 марта 1996 г.). «Доказательство Великой теоремы Ферма» . Архивировано из оригинала 10 декабря 2008 года . Проверено 29 июня 2017 года .
  11. ^ a b "Andrew Wiles on Solving Fermat". PBS. 1 November 2000. Retrieved 29 June 2017.
  12. ^ a b Buzzard, Kevin (22 February 1999). "Review of Modular forms and Fermat's Last Theorem, by G. Cornell, J. H. Silverman, and G. Stevens" (PDF). Bulletin of the American Mathematical Society. 36 (2): 261–266. doi:10.1090/S0273-0979-99-00778-8.
  13. ^ a b Singh, pp. 269–277.
  14. ^ Kolata, Gina (28 июня 1994). «Год спустя загвоздка остается в математическом доказательстве» . Нью-Йорк Таймс . ISSN 0362-4331 . Проверено 29 июня 2017 года . 
  15. ^ Kolata, Gina (3 июля 1994). «26 июня - 2 июля; год спустя загадка Ферма все еще не совсем ясна» The New York Times . ISSN 0362-4331 . Проверено 29 июня 2017 года .  
  16. ^ Singh, стр. 175-185.
  17. ^ Ацель, стр. 132-134.
  18. ^ Сингх, стр. 186–187 (текст сокращен).
  19. ^ a b "Fermat's last theorem". MacTutor History of Mathematics. February 1996. Retrieved 29 June 2017.
  20. ^ Cornell, Gary; Silverman, Joseph H.; Stevens, Glenn (2013). Modular Forms and Fermat's Last Theorem (illustrated ed.). Springer Science & Business Media. p. 549. ISBN 978-1-4612-1974-3. Extract of page 549
  21. ^ O'Carroll, Eoin (17 August 2011). "Why Pierre de Fermat is the patron saint of unfinished business". The Christian Science Monitor. ISSN 0882-7729. Retrieved 29 June 2017.
  22. ^ Granville, Andrew. "History of Fermat's Last Theorem". Retrieved 29 June 2017.
  23. ^ Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001). "On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises". Journal of the American Mathematical Society. 14 (4): 843–939. doi:10.1090/S0894-0347-01-00370-8. ISSN 0894-0347.
  24. ^ a b Хесселинк, Вим Х. (3 апреля 2008 г.). "Компьютерная проверка доказательства Великой теоремы Ферма Уайлсом" . www.cs.rug.nl . Проверено 29 июня 2017 года .
  25. ^ Сингх стр.259-262
  26. ^ Singh, С. 239-243. Aczel, стр. 122–125.
  27. ^ Глава 5 Уайлс, Эндрю (1995). "Модульные эллиптические кривые и Последняя теорема Ферма" (PDF) . Анналы математики . 141 (3): 443–551. CiteSeerX 10.1.1.169.9076 . DOI : 10.2307 / 2118559 . JSTOR 2118559 . OCLC 37032255 .    
  28. Малек, Масуд (6 января 1996 г.). «Последняя теорема Ферма» . Проверено 29 июня 2017 года .
  29. ^ "sci.math FAQ: Атака Уайлса" . www.faqs.org . Проверено 29 июня 2017 года .
  30. ^ "Fermat's Last Theorem, a Theorem at Last" (PDF). FOCUS. August 1993. Retrieved 29 June 2017.
  31. ^ Weston, Tom. "Research Summary Topics". people.math.umass.edu. Retrieved 29 June 2017.
  32. ^ Gouvêa, Fernando (1994). "A Marvelous Proof". American Mathematical Monthly. 101 (3): 203–222. doi:10.2307/2975598. JSTOR 2975598. Retrieved 29 June 2017.
  33. ^ "The Mathematical Association of America's Lester R. Ford Award". Retrieved 29 June 2017.
  34. ^ Faltings, Gerd (July 1995). "The Proof of Fermat's Last Theorem by R. Taylor and A. Wiles" (PDF). Notices of the American Mathematical Society. 42 (7): 743–746.

Bibliography[edit]

  • Aczel, Amir (1 January 1997). Fermat's Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem. ISBN 978-1-56858-077-7. Zbl 0878.11003.
  • Джон Коутс (июль 1996 г.). «Уайлс получает премию НАН Украины по математике» (PDF) . Уведомления AMS . 43 (7): 760–763. Zbl  1029.01513 .
  • Корнелл, Гэри (1 января 1998 г.). Модулярные формы и Последняя теорема Ферма . ISBN 978-0-387-94609-2. Zbl  0878.11004 . (Корнелл и др.)
  • Дэйни, Чарльз (2003). «Математика Великой теоремы Ферма» . Архивировано из оригинала 3 августа 2004 года . Проверено 5 августа 2004 года .
  • Darmon, H. (9 September 2007). "Wiles' theorem and the arithmetic of elliptic curves" (PDF).
  • Faltings, Gerd (July 1995). "The Proof of Fermat's Last Theorem by R. Taylor and A. Wiles" (PDF). Notices of the AMS. 42 (7): 743–746. ISSN 0002-9920. Zbl 1047.11510.
  • Frey, Gerhard (1986). "Links between stable elliptic curves and certain diophantine equations". Ann. Univ. Sarav. Ser. Math. 1: 1–40. Zbl 0586.10010.
  • Hellegouarch, Yves (1 January 2001). Invitation to the Mathematics of Fermat–Wiles. ISBN 978-0-12-339251-0. Zbl 0887.11003. See review
  • Mozzochi, Charles (7 December 2000). The Fermat Diary. American Mathematical Society. ISBN 978-0-8218-2670-6. Zbl 0955.11002. See also Gouvêa, Fernando Q. (2001). "Review: Wiles's Proof, 1993–1995: The Fermat Diary by C. J. Mozzochi". American Scientist. 89 (3): 281–282. JSTOR 27857485.
  • Моззочи, Чарльз (6 июля 2006 г.). Доказательство Ферма . Издательство Trafford. ISBN 978-1-4120-2203-3. Zbl  1104.11001 .
  • О'Коннор, Джей Джей; Робертсон, EF (1996). «Последняя теорема Ферма» . Проверено 5 августа 2004 года .
  • ван дер Поортен, Альфред (1 января 1996 г.). Заметки о Великой теореме Ферма . ISBN 978-0-471-06261-5. Zbl  0882.11001 .
  • Рибенбойм, Пауло (1 января 2000 г.). Последняя теорема Ферма для любителей . ISBN 978-0-387-98508-4. Zbl  0920.11016 .
  • Сингх, Саймон (октябрь 1998 г.). Загадка Ферма . Нью-Йорк: якорные книги. ISBN 978-0-385-49362-8. Zbl  0930,00002 .
  • Саймон Сингх "Вся история" . Архивировано из оригинального 10 мая 2011 года. Отредактированная версия эссе на 2000 слов, опубликованного в журнале Prometheus, описывающего успешное путешествие Эндрю Уайлса.
  • Ричард Тейлор и Эндрю Уайлс (май 1995 г.). "Теоретико-кольцевые свойства некоторых алгебр Гекке". Анналы математики . 141 (3): 553–572. CiteSeerX  10.1.1.128.531 . ISSN  0003-486X . JSTOR  2118560 . OCLC  37032255 . Zbl  0823.11030 .
  • Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem". Annals of Mathematics. 141 (3): 443–551. CiteSeerX 10.1.1.169.9076. doi:10.2307/2118559. ISSN 0003-486X. JSTOR 2118559. OCLC 37032255. Zbl 0823.11029.

External links[edit]

  • Weisstein, Eric W. "Fermat's Last Theorem". MathWorld.
  • "The Proof". The title of one edition of the PBS television series NOVA discusses Andrew Wiles's effort to prove Fermat's Last Theorem that broadcast on BBC Horizon and UTV/Documentary as Fermat's Last Theorem (Adobe Flash) (subscription required)
  • Wiles, Ribet, Shimura–Taniyama–Weil and Fermat's Last Theorem
  • Are mathematicians finally satisfied with Andrew Wiles's proof of Fermat's Last Theorem? Why has this theorem been so difficult to prove?, Scientific American, 21 October 1999

Explanations of the proof (varying levels)[edit]

  • Overview of Wiles proof, accessible to non-experts, by Henri Darmon
  • очень краткое изложение доказательства Чарльза Дэйни
  • Студенты на 140 страницах отрабатывают доказательство с упражнениями, Найджел Бостон.