Газодинамическая лаборатория


Газодинамическая лаборатория (ГДЛ) — первая научно-исследовательская и опытно-конструкторская лаборатория СССР[⇨]. Её деятельность была посвящена разработке ракетных снарядов на бездымном порохе, ставших прообразами снарядов в гвардейском реактивном миномете «Катюша»[⇨], а также жидкостных ракетных двигателей (ЖРД), ставших прообразами двигателей советских ракет и космических аппаратов[⇨]. В конце 1933 вошла в состав РНИИ[⇨]. В честь сотрудников ГДЛ названы кратеры на обратной стороне Луны[⇨], а в здании Иоанновского равелина Петропавловской крепости Санкт-Петербурга[7], где располагались испытательные стенды ГДЛ, с 1973 г. открыт музей космонавтики и ракетной техники[⇨].

В ГДЛ предложен бездымный (тротилпироксилиновый) порох на нелетучем растворителе. В 19271933 пороховые ускорители применялись при взлёте самолётов (У-1, ТБ-1 и др.) Также были изготовлены ракетные снаряды разного калибра для стрельбы с самолётов и земли. РНИИ затем доработал эти снаряды для гвардейских реактивных миномётов («Катюша»), которые использовались в годы Великой Отечественной войны 1941—1945 годов. В эти работы основной конструкторский вклад внесли сотрудники ГДЛ Н. И. Тихомиров, В. А. Артемьев, Б. С. Петропавловский, Г. Э. Лангемак, И. И. Гвай и другие[8].

С 15 мая 1929 г. создано подразделение для разработки электрических (ЭРД) и жидкостных (ЖРД) ракетных двигателей. Подразделение возглавил В. П. Глушко,[8][10] который предложил использовать энергию при электровзрыве металлов для создания ракетной тяги. В начале 1930-х гг. создан первый в мире образец электротермического двигателя ракеты (ЭРД)[11].

C 1929 г. в лаборатории Глушко проводились экспериментальные пуски ЖРД — опытных ракетных моторов (ОРМ — от ОРМ-1 до ОРМ-52). Всего 100 пусков с использованием различных видов топлива — как низко-, так и высококипящих. Была достигнута тяга до 2940 Н и удельный импульс до 2060 м/с. Разрабатывались экспериментальные ракеты РЛА (реактивные летательные аппараты); изготовлены первые две ракеты с высотой подъема 2-4 км из запланированной серии[11].

Для повышения ресурса применялись различные технические решения: реактивное сопло имело спирально оребрённую стенку и охлаждалось компонентами топлива, применялось завесное охлаждение для камеры сгорания[11], керамическая теплоизоляция камеры сгорания — двуокись циркония[8].

C 1930 г. в качестве окислителя впервые предложены азотная кислота, растворы азотной кислоты с четырёхокисью азота, тетранитрометан, хлорная кислота, пероксид водорода[8]. В результате экспериментов к концу 1933 года выбрано высококипящее топливо из керосина и азотной кислоты как наиболее удобное в эксплуатации и промышленном получении[11].