Неприводимое представление


Неприводимое представление алгебраической структуры — это ненулевое представление, которое не имеет собственного подпредставления , замкнутого по .

Любое конечномерное унитарное представление[англ.] на эрмитовом векторном пространстве [1] является прямой суммой неприводимых представлений. Поскольку неприводимые представления всегда неразложимы (то есть не могут быть разложены далее на прямую сумму представлений), эти термины часто путаются. Однако, в общем случае, существует много приводимых, но неразложимых представлений, таких как двумерное представление вещественных чисел, действующее посредством верхних треугольных унипотентных матриц.

Теорию представления групп обобщил Ричард Брауэр в 1940-х годах, дав модульную теорию представления[англ.], в которой матричные операции действуют на векторном пространстве над полем с произвольной характеристикой, а не векторное пространство над полем вещественных чисел или над полем комплексных чисел. Структура, аналогичная неприводимому представлению в получающейся теории, — это простой модуль.

Пусть будет представлением, то есть гомоморфизмом группы , где является векторным пространством над полем . Если мы выберем базис для , можно считать функцией (гомоморфизмом) из группы в множество обратимых матриц и в этом контексте представление называется матричным представлением. Однако всё сильно упрощается, если мы рассматриваем пространство без базиса.