K-диапазон


K-диапазондиапазон частот сантиметровых длин волн, используемых в основном для радиолокации, а также для спутниковой радиосвязи. По определению IEEE, этот диапазон простирается от 18 до 26,5 ГГц электромагнитного спектра (что соответствует длинам волн от 1,67 до 1,13 см)[1]. Название диапазона происходит от немецкого слова «короткий»: нем. kurz.

Использование этого диапазона для радиосвязи ограничено из-за сильного поглощения радиоволн в атмосфере водяным паром, и поэтому обычно для этой цели используются диапазоны находящиеся "под" и "над" K-диапазоном: Ku и Ka соответственно.

Одна из основных областей применения K-диапазона это спутниковая связь. В связи с тем, что в традиционных диапазонах (S-, L-, C-, X- и Ku-) для этих целей уже не осталось места, в настоящее время всё больше и больше используются Ka- и K-диапазоны.

В спутниковой связи этот диапазон называется Ka-диапазон 30/20 ГГц и полосы частот зарезервированные для этих целей лежат между 18,3–18,8 и 19,7–20,2 ГГц для линии Спутник — Земля, и между 27,5 и 31 ГГц для линии Земля - Спутник. То есть, канал Спутник — Земля полностью лежит в K-диапазоне, а канал Земля - Спутник в Ka-диапазоне [2][3][4].

В настоящее время среди систем использующих Ka-диапазон 30/20 ГГц можно отметить канадский Anik F2, который обладает 45 активными Ka-транспондерами и обеспечивает услуги мультимедиа и широкополосный доступ в Интернет на территории Северной Америки[5], а также KA-SAT принадлежащий Eutelsat и обеспечивающий похожие услуги на территории Европы[6]. Среди российских спутников, этот диапазон используют военные спутники Радуга-1 и Радуга-1М. Кроме того, в этом диапазоне должен был работать планировавшийся спутник Экспресс АМ4, запущенный на нерасчётную орбиту в августе 2011 года и впоследствии признанный полностью потерянным.

K-диапазон широко используется в радиолокации. Из-за особенностей этого диапазона (высокая степень атмосферного поглощения и небольшая длина волны), радары K-диапазона способны работать лишь на коротких расстояниях, производя измерения сверхвысокого разрешения. Типичной сферой применения этих радаров является управление воздушным движением в аэропортах, где с помощью последовательности очень коротких импульсов (длиной в несколько наносекунд) определяется дистанция до воздушного судна[8][9].