Из Википедии, бесплатной энциклопедии
  (Перенаправлено из EUC-JP )
Перейти к навигации Перейти к поиску

Расширенный код Unix ( EUC ) - это система кодирования многобайтовых символов, используемая в основном для японского , корейского и упрощенного китайского языков .

Наиболее часто используемые коды EUC - это кодировки переменной ширины с символом, принадлежащим к набору кодированных символов, совместимым с ISO / IEC 646 (например, ASCII ), занимающим один байт, и символом, принадлежащим к набору кодированных символов 94x94 (например, GB 2312 ). в два байта. Форма EUC-CN из GB 2312 и EUC-KR являются примерами таких двухбайтовых кодов EUC. EUC-JP включает символы, представленные до трех байтов, включая начальный код сдвига , тогда как один символ в EUC-TW может занимать до четырех байтов.

Современные приложения с большей вероятностью будут использовать UTF-8 , который поддерживает все символы кодов EUC и многое другое, и, как правило, более переносим с меньшим количеством отклонений и ошибок от поставщиков. Однако EUC по-прежнему очень популярен, особенно EUC-KR для Южной Кореи.

Структура кодирования [ править ]

Связь между упакованными EUC и другими 8-битными профилями ISO 2022

Структура EUC основана на стандарте ISO / IEC 2022 , который определяет систему графических наборов символов, которые могут быть представлены последовательностью 94 7-битных байтов 0x 21–7E или, альтернативно, 0xA1 – FE, если восьмой бит доступен. Это позволяет использовать наборы из 94 графических символов, или 8836 (94 2 ) символов, или 830584 (94 3 ) символа. Хотя изначально 0x20 и 0x7F всегда были символом пробела и удаления, а 0xA0 и 0xFF не использовались, более поздние версии ISO / IEC 2022разрешено использование байтов 0xA0 и 0xFF (или 0x20 и 0x7F) в наборах при определенных обстоятельствах, что позволяет включать 96-символьные наборы. Диапазоны 0x00–1F и 0x80–9F используются для управляющих кодов C0 и C1 .

EUC - это семейство 8-битных профилей ISO / IEC 2022 , в отличие от 7-битных профилей, таких как ISO-2022-JP . Таким образом, только наборы символов, совместимые с ISO 2022, могут иметь формы EUC. До четырех наборов кодированных символов (называемых G0, G1, G2 и G3 или кодовых наборов 0, 1, 2 и 3) могут быть представлены с помощью схемы EUC. Набор G0 установлен в соответствующий ISO / IEC 646 кодированный набор символов, такой как US-ASCII , ISO 646: KR ( KS X 1003 ) или ISO 646: JP (нижняя половина JIS X 0201 ) и вызывается через GL (т. Е. 0x21–0x7E, старший бит очищен). [1] Если используется US-ASCII, это делает кодрасширенная кодировка ASCII ; наиболее частым отклонением от US-ASCII является то, что 0x5C ( обратная косая черта в US-ASCII) часто используется для обозначения знака йены в EUC-JP (см. ниже) и знака выигрыша в EUC-KR.

Другие кодовые наборы вызываются через GR (т. Е. С набором наиболее значимых битов). Следовательно, чтобы получить форму EUC символа, устанавливается самый старший бит каждого байта кодирования (эквивалентно добавлению 128 к каждому 7-битному байту кодирования или добавлению 160 к каждому числу в коде kuten ); это позволяет программное обеспечение легко отличить ли конкретный байт в строке символов принадлежит ISO 646 кода или расширенного кода. Символы в кодовых наборах 2 и 3 имеют префиксы с управляющими кодами SS2 (0x8E) и SS3 (0x8F) соответственно и вызываются через GR. Помимо начального кода сдвига, любой байт вне диапазона 0xA0–0xFF, появляющийся в символе из кодовых наборов с 1 по 3, не является допустимым кодом EUC. [1]

Сам код EUC не использует последовательности объявления и обозначения из ISO 2022 . [1] Однако спецификация кода эквивалентна следующей последовательности из четырех последовательностей объявлений ISO 2022 со следующими значениями. [1]

Формат с фиксированной шириной [ править ]

Описанное выше кодирование переменной ширины на основе ISO-2022 иногда называют упакованным форматом EUC , который представляет собой формат кодирования, обычно обозначаемый как EUC. Однако внутренняя обработка данных EUC может использовать формат преобразования фиксированной ширины, называемый полным двухбайтовым форматом EUC . Это означает: [2]

  • Кодовый набор 0 как два байта в диапазоне 0x21–0x7E (за исключением того, что первый может быть 0x00).
  • Кодовый набор 1 как два байта в диапазоне 0xA0–0xFF (за исключением того, что первый может быть 0x80).
  • Кодовый набор 2 в виде байта в диапазоне 0x20–0x7E (или 0x00), за которым следует байт в диапазоне 0xA0–0xFF.
  • Кодовый набор 3 в виде байта в диапазоне 0xA0–0xFF (или 0x80), за которым следует байт в диапазоне 0x21–0x7E.

Начальные байты 0x00 и 0x80 используются в случаях, когда кодовый набор использует только один байт. Существует также четырехбайтовый формат фиксированной длины. [2] Эти форматы кодирования фиксированной длины подходят для внутренней обработки и обычно не встречаются при обмене.

EUC-JP зарегистрирован IANA в обоих форматах: в упакованном формате как «EUC-JP» или «csEUCPkdFmtJapanese» и в формате фиксированной ширины как «csEUCFixWidJapanese». [3] В стандарт кодирования WHATWG, используемый HTML5, включен только упакованный формат . [4]

EUC-CN [ править ]

EUC-CN[5] is the usual encoded form of the GB 2312 standard for simplified Chinese characters. Unlike the case of Japanese JIS X 0208 and ISO-2022-JP, GB 2312 is not normally used in a 7-bit ISO 2022 code version,[a] although a variant form called HZ (which delimits GB 2312 text with ASCII sequences) was sometimes used on USENET.

An ASCII character is represented in its usual encoding. A character from GB 2312 is represented by two bytes, both from the range 0xA1–0xFE.

Related Mainland Chinese encoding systems[edit]

748 code[edit]

An encoding related to EUC-CN is the "748" code used in the WITS typesetting system developed by Beijing's Founder Technology (now obsoleted by its newer FITS typesetting system). The 748 code contains all of GB 2312, but is not ISO 2022–compliant and therefore not a true EUC code. (It uses an 8-bit lead byte but distinguishes between a second byte with its most significant bit set and one with its most significant bit cleared, and is therefore more similar in structure to Big5 and other non–ISO 2022–compliant DBCS encoding systems.) The non-GB2312 portion of the 748 code contains traditional and Hong Kong characters and other glyphs used in newspaper typesetting.

GBK and GB 18030[edit]

GBK is an extension to GB 2312. It defines an extended form of the EUC-CN encoding capable of representing a larger array of CJK characters sourced largely from Unicode 1.1, including traditional Chinese characters and characters used only in Japanese. It is not, however, a true EUC code, because ASCII bytes may appear as trail bytes (and C1 bytes, not limited to the single shifts, may appear as lead or trail bytes), due to a larger encoding space being required.

Variants of GBK are implemented by Windows code page 936 (the Microsoft Windows code page for simplified Chinese), and by IBM's code page 1386.

The Unicode-based GB 18030 character encoding defines an extension of GBK capable of encoding the entirety of Unicode. However, Unicode encoded as GB 18030 is a variable-width encoding which may use up to four bytes per character, due to an even larger encoding space being required. Being an extension of GBK, it is a superset of EUC-CN but is not itself a true EUC code. Being a Unicode encoding, its repertoire is identical to that of other Unicode transformation formats such as UTF-8.

Mac OS Chinese Simplified[edit]

Other EUC-CN variants deviating from the EUC mechanism include the Mac OS Chinese Simplified script (known as Code page 10008 or x-mac-chinesesimp).[6] It uses the bytes 0x80, 0x81, 0x82, 0xA0, 0xFD, 0xFE and 0xFF for the U with umlaut (ü), two special font metric characters, the non-breaking space, the copyright sign (©), the trademark sign (™) and the ellipsis (…) respectively.[5] This differs in what is regarded as a single-byte character versus the first byte of a two-byte character from both EUC (where, of those, 0xFD and 0xFE are defined as lead bytes) and GBK (where, of those, 0x81, 0x82, 0xFD and 0xFE are defined as lead bytes).

This use of 0xA0, 0xFD, 0xFE and 0xFF matches Apple's Shift_JIS variant.

Besides these changes to the lead byte range, the other distinctive feature of the double-byte portion of Mac OS Chinese Simplified is the inclusion of two extensions to the basic GB 2312-80 set in rows 6 and 8.[5] These are considered "standard extensions to GB 2312", neither of which is proprietary to Apple: the row 8 extension was taken from GB 6345.1,[5] both extensions are included by GB/T 12345 (the Traditional Chinese variant of GB 2312),[7] and both extensions are included by GB 18030 (the successor to GB 2312).[8]

EUC-JP[edit]

EUC-JP is a variable-width encoding used to represent the elements of three Japanese character set standards, namely JIS X 0208, JIS X 0212, and JIS X 0201. Other names for this encoding include Unixized JIS (or UJIS) and AT&T JIS.[2] 0.1% of all web pages use EUC-JP since August 2018,[9] while 2.8% of websites in Japanese use this encoding (less used than Shift JIS, or UTF-8). It is called Code page 954 by IBM.[10][11] Microsoft has two code page numbers for this encoding (51932 and 20932).

This encoding scheme allows the easy mixing of 7-bit ASCII and 8-bit Japanese without the need for the escape characters employed by ISO-2022-JP, which is based on the same character set standards, and without ASCII bytes appearing as trail bytes (unlike Shift JIS).

A related and partially compatible encoding, called EUC-JISx0213 or EUC-JIS-2004, encodes JIS X 0201 and JIS X 0213[12] (similarly to Shift_JISx0213, its Shift_JIS-based counterpart).

Compared to EUC-CN or EUC-KR, EUC-JP did not become as widely adopted on PC and Macintosh systems in Japan, which used Shift JIS or its extensions (Windows code page 932 on Microsoft Windows, and MacJapanese on classic Mac OS), although it became heavily used by Unix or Unix-like operating systems (except for HP-UX). Therefore, whether Japanese web sites use EUC-JP or Shift_JIS often depends on what OS the author uses.

Characters are encoded as follows:

  • As an EUC/ISO 2022 compliant encoding, the C0 control characters, space and DEL are represented as in ASCII.
  • A graphical character from ASCII (code set 0) is represented as its usual one-byte representation, in the range 0x21 – 0x7E. While some variants of EUC-JP encode the lower half of JIS X 0201 here, most encode ASCII,[13] including the W3C/WHATWG Encoding standard used by HTML5,[14] and so does EUC-JIS-2004.[12] While this means that 0x5C is typically mapped to Unicode as U+005C REVERSE SOLIDUS (the ASCII backslash), U+005C may be displayed as a Yen sign by certain Japanese-locale fonts, e.g. on Microsoft Windows, for compatibility with the lower half of JIS X 0201.[15][16]
  • A character from JIS X 0208 (code set 1) is represented by two bytes, both in the range 0xA1 – 0xFE. This differs from the ISO-2022-JP representation by having the high bit set. This code set may also contain vendor extensions in some EUC-JP variants. In EUC-JIS-2004, the first plane of JIS X 0213 is encoded here, which is effectively a superset of standard JIS X 0208.[12]
  • A character from the upper half of JIS X 0201 (half-width kana, code set 2) is represented by two bytes, the first being 0x8E, the second being the usual JIS X 0201 representation in the range 0xA1 – 0xDF. This set may contain IBM vendor extensions in some variants.
  • A character from JIS X 0212 (code set 3) is represented in EUC-JP by three bytes, the first being 0x8F, the following two being in the range 0xA1–0xFE, i.e. with the high bit set. In addition to standard JIS X 0212, code set 3 of some EUC-JP variants may also contain extensions in rows 83 and 84 to represent characters from IBM's Shift JIS extensions which lack standard JIS X 0212 mappings, which may be coded in either of two layouts, one defined by IBM themselves and one defined by the OSF.[17][18] In EUC-JIS-2004, the second plane of JIS X 0213 is encoded here,[12] which does not collide with the allocated rows in standard JIS X 0212.[19] Some implementations of EUC-JIS-2004, such as the one used by Python, allow both JIS X 0212 and JIS X 0213 plane 2 characters in this set.[19]

Related Japanese encoding methods[edit]

Vendor extensions to EUC-JP (from, for example, the Open Software Foundation, IBM or NEC) were often allocated within the individual code sets,[17][18] as opposed to using invalid EUC sequences (as in popular extensions of EUC-CN and EUC-KR).

However, some vendor-specific encodings are partially compatible with EUC-JP, due to encoding JIS X 0208 over GR, but do not follow the packed EUC structure. Often, these do not include use of the single shifts from EUC-JP, and are thus not straight extensions of EUC-JP, with the exception of Super DEC Kanji.

DEC Kanji[edit]

Digital Equipment Corporation defines two variants of EUC-JP only partly conforming to the EUC packed format, but also bearing some resemblance to the complete two-byte format. The overall format of the "DEC Kanji" encoding mostly corresponds to fixed-width (complete two-byte) EUC; however, code set 0 is not required to be left-padded with null bytes (similarly to the packed format).[20] JIS X 0208 is, as usual, used for code set 1; code set 2 (half-width katakana) is absent; code set 3 is encoded like the two-byte fixed width format (i.e. without a shift byte and with only the first high bit set), but used for two-byte user defined characters rather than being specified for JIS X 0212.[20] In the basic "DEC Kanji" encoding, only the first 31 rows of code set 3 are used for user-defined characters: rows 32 through 94 are reserved, similarly to the unused rows in code set 1.[21]

The "Super DEC Kanji" encoding accepts codes both from the "DEC Kanji" encoding and from packed-format EUC, for a total of five code-sets.[20] It also allows the entire user defined code set, and the unused rows at the ends of the JIS X 0208 and JIS X 0212 code sets (rows 85–94 and 78–94 respectively), to be used for user-defined characters.[21]

HP-16[edit]

Hewlett-Packard defines an encoding referred to as "HP-16". This accompanies their "HP-15" encoding, which is a variant of Shift JIS. HP-16 encodes JIS X 0208 using the same bytes as in EUC-JP, but does not use the single shift codes (thus omitting code sets 2 and 3), and adds three user-defined regions which do not follow the packed-format EUC structure:[20]

  • Lead bytes 0xA1–C2, trail bytes 0x21–7E
  • Lead bytes 0xC3–E3, trail bytes 0x21–3F
  • Lead bytes 0xC3–E1, trail bytes 0x40–64

IKIS[edit]

The IKIS (Interactive Kanji Information System) encoding used by Data General resembles EUC-JP without single shifts, i.e. with only code sets 0 and 1. Half-width katakana are instead included in row 8 of JIS X 0208 (colliding with the box-drawing characters added to the standard in 1983). JIS X 0208 rows 9 through 12 are used for user-defined characters.[20][21]

Adaptations of EUC-JP for EBCDIC[edit]

KEIS (Kanji-processing Extended Information System) is an EBCDIC encoding used by Hitachi,[21] with double-byte characters (a DBCS-Host encoding) included using shifting sequences, making it a stateful encoding. Specifically, the sequence 0x0A 0x41 switches to single-byte mode and the sequence 0x0A 0x42 switches to double-byte mode.[b] However, JIS X 0208 characters are encoded using the same byte sequences used to encode them in EUC-JP. This results in duplicate encodings for the ideographic space—0x4040 per the DBCS-Host code structure, and 0xA1A1 as in EUC-JP. This differs from IBM's DBCS-Host encoding for Japanese, the layout of which builds on versions which predate JIS X 0208 altogether. The lead byte range is extended back to 0x59, out of which the lead bytes 0x81–A0 are designated for user-defined characters,[20] and the remainder are used for corporate-defined characters, including both kanji and non-kanji.[21]

JEF (Japanese-processing Extended Feature)[21] is an EBCDIC encoding used on Fujitsu FACOM mainframes, contrasting with FMR (a variant of Shift JIS) used on Fujitsu PCs. Like KEIS, JEF is a stateful encoding, switching to a double-byte DBCS-Host mode using shifting sequences (where 0x29 switches to single-byte mode and 0x28 switches to double-byte mode).[22] Also similarly to KEIS, JIS X 0208 codes are represented the same as in EUC-JP.[20] The lead byte range is extended back to 0x41, with 0x80–A0 designated for user definition; lead bytes 0x41–7F are assigned row numbers 101 through 163 for kuten purposes, although row 162 (lead byte 0x7E) is unused.[20][21] Rows 101 through 148 are used for extended kanji, while rows 149 through 163 are used for extended non-kanji.[21]

EUC-KR[edit]

EUC-KR is a variable-width encoding to represent Korean text using two coded character sets, KS X 1001 (formerly KS C 5601)[23][24] and either ISO 646:KR (KS X 1003, formerly KS C 5636) or US-ASCII, depending on variant. KS X 2901 (formerly KS C 5861) stipulates the encoding and RFC 1557 dubbed it as EUC-KR.

A character drawn from KS X 1001 (G1, code set 1) is encoded as two bytes in GR (0xA1–0xFE) and a character from KS X 1003 or US-ASCII (G0, code set 0) takes one byte in GL (0x21–0x7E).

It is usually referred to as Wansung (Korean: 완성, romanized: Wanseong, lit. 'precomposed[25]') in the Republic of Korea. When used with ASCII, it is called Code page 970 by IBM.[26][27][28] It is implemented as Code page 20949 ("Korean Wansung")[29][30] and Code page 51949 ("EUC Korean") by Microsoft.[29]

As of April 2021, 0.1% of all web pages globally use EUC-KR,[9] which is misleading as 10.5% of South Korean web pages use (only country the encoding is meant for),[31] making it the most popular non-UTF-8/Unicode encoding for a language/web domain, while only 6.0% of web pages using Korean language (making UTF-8 less popular in South Korea than in (seemingly) all countries of the world).[32] Including extensions, it is the most widely used legacy character encoding in Korea on all three major platforms (macOS, other Unix-like OSes, and Windows), but its use has been very slowly shifting to UTF-8 as it gains popularity, especially on Linux and macOS.

As with most other encodings, UTF-8 is now preferred for new use, solving problems with consistency between platforms and vendors.

Related Korean encoding systems[edit]

Unified Hangul Code[edit]

A common extension of EUC-KR is the Unified Hangul Code (통합형 한글 코드, Tonghabhyeong Hangeul Kodeu,[33] or 통합 완성형, Tonghab Wansunghyung), which is the default Korean codepage on Microsoft Windows. It is given the code page number 949 by Microsoft, and 1261[34] or 1363[35] by IBM. IBM's code page 949 is a different, unrelated, EUC-KR extension.

Unified Hangul Code extends EUC-KR by using codes which do not conform to the EUC structure to incorporate additional syllable blocks, completing the coverage of the composed syllable blocks available in Johab and Unicode. The W3C/WHATWG Encoding Standard used by HTML5 incorporates the Unified Hangul Code extensions into its definition of EUC-KR.[36]

Mac OS Korean (HangulTalk)[edit]

Other encodings incorporating EUC-KR as a subset include the Mac OS Korean script (known as Code page 10003 or x-mac-korean),[6] which was used by HangulTalk (MacOS-KH), the Korean localisation of the classic Mac OS. It was developed by Elex Computer (일렉스), who were at the time the authorised distributor of Apple Macintosh computers in South Korea.[37][21]

HangulTalk adds extension characters with lead bytes between 0xA1 and 0xAD, both in unused space within the EUC-KR GR plane (trail bytes 0xA1–0xFE), and using non-EUC codes outside of it (trail bytes 0x41–0xA0). Some of these characters are font-style-independent stylised dingbats.[21] Many of these characters do not have exact Unicode mappings, and Apple software maps these cases variously to combining sequences, to approximate mappings with an appended private-use character as a modifier for round-trip purposes, or to private-use characters.[38]

Apple also uses certain single-byte codes outside of the EUC-KR plane for additional characters: 0x80 for a required space, 0x81 for a won sign (₩), 0x82 for an en dash (–), 0x83 for a copyright sign (©), 0x84 for a wide underscore (_) and 0xFF for an ellipsis (…).[38] Although none of these additional single-byte codes are within the lead byte range of plain EUC-KR (unlike Apple's extensions to EUC-CN, see above), some are within the lead byte range of Unified Hangul Code (specifically, 0x81, 0x82, 0x83 and 0x84).

EUC-KP[edit]

Similarly to KS X 1001, the North Korean KPS 9566 standard is typically used in EUC form; in these contexts, it is sometimes referred to as EUC-KP.[39] More recent editions of the standard extend the EUC representation with characters using non-EUC two-byte codes, in a similar manner to Unified Hangul Code.[40]

EUC-TW[edit]

EUC-TW is a variable-width encoding that supports US-ASCII and 16 planes of CNS 11643, each of which is 94x94. It is a rarely used encoding for traditional Chinese characters as used in Taiwan. Variants of Big5 are much more common than EUC-TW, although Big5 only encodes the first two planes of CNS 11643 hanzi, while UTF-8 is becoming more common.

  • As an EUC/ISO 2022 encoding, the C0 control characters, ASCII space and DEL are encoded as in ASCII.
  • A graphical character from US-ASCII (G0, code set 0) is encoded in GL as its usual single byte representation (0x21–0x7E).
  • A character from CNS 11643 plane 1 (code set 1) is encoded as two bytes in GR (0xA1–0xFE).
  • A character in plane 1 through 16 of CNS 11643 (code set 2) is encoded as four bytes:
    • The first byte is always 0x8E (Single Shift 2).
    • The second byte (0xA1–0xB0) indicates the plane, the number of which is obtained by subtracting 0xA0 from that byte.
    • The third and fourth bytes are in GR (0xA1–0xFE).

Note that the plane 1 of CNS 11643 is encoded twice as code set 1 and a part of code set 2.

See also[edit]

  • CJK
  • Japanese language and computers
  • Korean language and computers
  • Chinese character encoding

Notes[edit]

  1. ^ 7-bit ISO 2022 code versions supporting GB 2312 include ISO-2022-CN (with shift codes) and ISO-2022-JP-2 (without shift codes), both of which also support other non-ASCII sets.
  2. ^ These sequences match the hexadecimal forms shown by DEC[22] and the decimal forms (10 65 and 10 66) listed by Lunde.[20] Lunde lists the hexadecimal forms for both as 0xA0 0x42, seemingly in error.

References[edit]

  1. ^ a b c d IBM. "Character Data Representation Architecture (CDRA)". pp. 157–162.
  2. ^ a b c Lunde, Ken (2008). CJKV Information Processing: Chinese, Japanese, Korean, and Vietnamese Computing. O'Reilly. pp. 242–244. ISBN 9780596800925.
  3. ^ "Character Sets". IANA.
  4. ^ "4.2. Names and labels". Encoding Standard. WHATWG.
  5. ^ a b c d "Map (external version) from Mac OS Chinese Simplified encoding to Unicode 3.0 and later". Apple, Inc.
  6. ^ a b "Encoding.WindowsCodePage Property - .NET Framework (current version)". MSDN. Microsoft.
  7. ^ Lunde, Ken (1998). Appendix F: GB/T 12345 (PDF). CJKV Information Processing. O'Reilly Media. ISBN 9781565922242.
  8. ^ Standardization Administration of China (SAC) (2005-11-18). GB 18030-2005: Information Technology—Chinese coded character set.
  9. ^ a b "Historical trends in the usage of character encodings for websites". W3Techs.
  10. ^ "CCSID 954 information document". Archived from the original on 2016-03-27.
  11. ^ International Components for Unicode (ICU), ibm-954_P101-2007.ucm, 2002-12-03
  12. ^ a b c d "JIS X 0213 Code Mapping Tables". x0213.org.
  13. ^ "Ambiguities in conversion from Japanese EUC to Unicode (Non-Normative)". XML Japanese Profile. W3C.
  14. ^ "EUC-JP decoder". Encoding Standard. WHATWG. "If byte is an ASCII byte, return a code point whose value is byte."
  15. ^ "3.1.1 Details of Problems". Problems and Solutions for Unicode and User/Vendor Defined Characters. The Open Group Japan. Archived from the original on 1999-02-03. Retrieved 2019-08-14.
  16. ^ Kaplan, Michael S. (2005-09-17). "When is a backslash not a backslash?".
  17. ^ a b "4.2 Review Process of Rules for Code Set Conversion Between eucJP-open and UCS". Problems and Solutions for Unicode and User/Vendor Defined Characters. The Open Group Japan. Archived from the original on 1999-02-03. Retrieved 2019-08-14.
  18. ^ a b Lunde, Ken (13 January 2009). "Appendix J: Japanese Character Sets" (PDF). CJKV Information Processing (2nd ed.). ISBN 978-0-596-51447-1.
  19. ^ a b Chang, Hyeshik. "Readme for CJKCodecs". cPython. Python Software Foundation.
  20. ^ a b c d e f g h i Lunde, Ken (13 January 2009). "Appendix F: Vendor Encoding Methods" (PDF). CJKV Information Processing (2nd ed.). ISBN 978-0-596-51447-1.
  21. ^ a b c d e f g h i j Lunde, Ken (2009). "Appendix E: Vendor Character Set Standards" (PDF). CJKV Information Processing: Chinese, Japanese, Korean & Vietnamese Computing (2nd ed.). Sebastopol, CA: O'Reilly. ISBN 978-0-596-51447-1.
  22. ^ a b "2: Codesets and Codeset Conversion". DIGITAL UNIX Technical Reference for Using Japanese Features. Digital Equipment Corporation, Compaq.
  23. ^ "KS X 1001:1992" (PDF).
  24. ^ "KS C 5601:1987" (PDF). 1988-10-01.
  25. ^ Lunde, Ken (2009). "Chapter 3: Character Set Standards". CJKV Information Processing. p. 146. ISBN 978-0596514471.
  26. ^ "CCSID 970". IBM Globalization. IBM. Archived from the original on 2014-12-01.
  27. ^ "ibm-970_P110_P110-2006_U2 (alias euc-kr)". Converter Explorer - ICU Demonstration. International Components for Unicode.
  28. ^ International Components for Unicode (ICU), ibm-970_P110_P110-2006_U2.ucm, 2002-12-03
  29. ^ a b "Code Page Identifiers". Windows Dev Center. Microsoft.
  30. ^ Julliard, Alexandre. "dump_krwansung_codepage: build Korean Wansung table from the KSX1001 file". make_unicode: Generate code page .c files from ftp.unicode.org descriptions. Wine Project.
  31. ^ "Distribution of Character Encodings among websites that use .kr". w3techs.com. Retrieved 2021-04-01.
  32. ^ "Distribution of Character Encodings among websites that use Korean". w3techs.com. Retrieved 2020-07-03.
  33. ^ "한글 코드에 대하여" (in Korean). W3C. Archived from the original on 2013-05-24. Retrieved 2019-01-07.
  34. ^ In ucnv_lmb.cpp, a file originating from IBM and included in the International Components for Unicode source tree, the lead byte 0x11 is commented as referring to "Korean: ibm-1261" after the definition of ULMBCS_GRP_KO, and is mapped to the "windows-949" ICU codec in the OptGroupByteToCPName array later in the file.
  35. ^ "Coded character set identifiers - CCSID 1363", IBM Globalization, IBM, archived from the original on 2014-11-29
  36. ^ "5. Indexes (§ index EUC-KR)", Encoding Standard, WHATWG
  37. ^ Gil, Hojin. "HangulTalk: De facto standard Hangul environment for Mac". Guide to using Hangul on Macintosh.
  38. ^ a b Apple (2005-04-05). "Map (external version) from Mac OS Korean encoding to Unicode 3.2 and later". Unicode Consortium.
  39. ^ Kim, Kyongsok (2002-11-30). "3-way cross-reference tables - KS X 1001, KPS 9566, and UCS" (PDF). ISO/IEC JTC 1/SC 2/WG 2 N2564. [Note: updated links for tables accompanying document: [1] [2]]
  40. ^ Chung, Jaemin (2018-01-05). "Information on the most recent version of KPS 9566 (KPS 9566-2011?)" (PDF). UTC L2/18-011.

External links[edit]

  • EUC-JP codeset table (minus the ASCII and halfwidth parts)
  • Code Page Identifiers
  • GB18030-2000 – The New Chinese National Standard
  • The New Generation of Pre-Press Software in China – mentions the 748 code
  • Description of the EUC-TW code (in Chinese)
  • Manual page of EUC-JISX0213 in the Perl Encode module
  • International Register of Coded Character Sets to be Used With Escape Sequence – section 2.4 (p.14f.) with the coded character sets of China, Japan, South Korea, North Korea and Taiwan (ISO/IEC)
  • Chinese, Japanese, and Korean character set standards and encoding systems