Из Википедии, бесплатной энциклопедии
  (Перенаправлено из MPPT )
Перейти к навигации Перейти к поиску

Отслеживание точки максимальной мощности ( MPPT ) [1] [2] или иногда просто отслеживание точки мощности ( PPT ), [3] [4] - это метод, обычно используемый с ветряными турбинами и фотоэлектрическими (PV) солнечными системами для максимального извлечения энергии при любых условиях. условия.

Хотя это в первую очередь относится к солнечной энергии, этот принцип обычно применяется к источникам с переменной мощностью: например, оптическим источникам энергии и термофотоэлектрическим элементам .

Фотоэлектрические солнечные системы существуют во многих различных конфигурациях в зависимости от их отношения к инверторным системам, внешним сетям, батареям или другим электрическим нагрузкам. [5] Независимо от конечного назначения солнечной энергии, центральная проблема, решаемая MPPT, заключается в том, что эффективность передачи энергии от солнечного элемента зависит от количества солнечного света, падающего на солнечные панели, температуры солнечной панели и электрические характеристики нагрузки . По мере изменения этих условий изменяется характеристика нагрузки, которая дает наивысшую эффективность передачи мощности. Эффективность системы оптимизируется, когда изменяется характеристика нагрузки, чтобы поддерживать передачу мощности с максимальной эффективностью. Эта характеристика нагрузки называется точкой максимальной мощности.(MPP). MPPT - это процесс поиска этой точки и сохранения в ней характеристики нагрузки. Электрические схемы могут быть спроектированы для подачи произвольной нагрузки на фотоэлектрические элементы и последующего преобразования напряжения, тока или частоты для соответствия другим устройствам или системам, а MPPT решает проблему выбора наилучшей нагрузки, которая будет представлена ​​на элементы, чтобы получить наиболее полезная мощность.

Солнечные элементы имеют сложную взаимосвязь между температурой и общим сопротивлением, которая обеспечивает нелинейную выходную эффективность, которую можно проанализировать на основе ВАХ . [6] [7] Целью системы MPPT является выборка выходного сигнала фотоэлементов и применение надлежащего сопротивления (нагрузки) для получения максимальной мощности для любых данных условий окружающей среды. [8] Устройства MPPT обычно интегрируются в систему преобразователя электроэнергии , которая обеспечивает преобразование напряжения или тока, фильтрацию и регулирование для управления различными нагрузками, включая электрические сети, батареи или двигатели.

  • Солнечные инверторы преобразуют мощность постоянного тока в мощность переменного тока и могут включать MPPT: такие инверторы отбирают выходную мощность (ВАХ) солнечных модулей и прикладывают соответствующее сопротивление (нагрузку) для получения максимальной мощности.
  • Мощность на MPP (P mpp ) является произведением напряжения MPP (V mpp ) и тока MPP (I mpp ).

Фон [ править ]

Кривые IV фотоэлектрического солнечного элемента там, где линия пересекает изгиб кривых, где расположена точка максимальной передачи мощности.

Фотоэлектрические элементы имеют сложную взаимосвязь между их рабочей средой и максимальной мощностью, которую они могут производить. Коэффициент заполнения , сокращенно FF , является параметром, который характеризует нелинейное электрическое поведение солнечного элемента. Коэффициент заполнения определяется как отношение максимальной мощности солнечного элемента к произведению напряжения холостого хода V oc и тока короткого замыкания I sc . В табличных данных это часто используется для оценки максимальной мощности, которую может обеспечить ячейка с оптимальной нагрузкой при заданных условиях, P = FF * V oc * I sc . Для большинства целей FF, V oc и I sc Достаточно информации, чтобы дать полезную приблизительную модель электрического поведения фотоэлектрического элемента в типичных условиях.

Для любого данного набора рабочих условий, клетки имеют одну рабочую точку , где значения тока ( I ) и напряжения ( V ) в результате клетки в максимальной мощности выхода. [9] Эти значения соответствуют определенному сопротивлению нагрузки , которое равно V / I, как указано в Законе Ома . Мощность Р задается P = V * I . Фотоэлектрический элемент на протяжении большей части своей полезной кривой действует как источник постоянного тока . [10]Однако в области MPP фотоэлектрического элемента его кривая имеет примерно обратную экспоненциальную зависимость между током и напряжением. Исходя из базовой теории схем, мощность, подаваемая от устройства или к устройству, оптимизируется там, где производная (графически, наклон) dI / dV кривой ВАХ равна и противоположна отношению I / V (где d P / dV = 0). [11] Это известно как точка максимальной мощности (MPP) и соответствует «изгибу» кривой.

Нагрузка с сопротивлением R = V / I, обратным этому значению, потребляет от устройства максимальную мощность. Иногда это называют «характеристическим сопротивлением» клетки. Это динамическая величина, которая изменяется в зависимости от уровня освещения, а также других факторов, таких как температура и возраст ячейки. Если сопротивление ниже или выше этого значения, потребляемая мощность будет меньше максимально доступной, и, таким образом, элемент не будет использоваться так эффективно, как мог бы. Трекеры точки максимальной мощности используют различные типы схем управления или логики для поиска этой точки и, таким образом, позволяют схеме преобразователя извлекать максимальную мощность, доступную из ячейки.

кривая мощности-напряжения (P-V)

Если доступна полная кривая мощности-напряжения (P-V), то точку максимальной мощности можно получить, используя метод деления пополам .

Реализация [ править ]

Когда нагрузка напрямую подключена к солнечной панели, рабочая точка панели редко будет иметь пиковую мощность. Полное сопротивление, видимое панелью, определяет рабочую точку солнечной панели. Таким образом, изменяя импеданс, видимый панелью, рабочая точка может быть перемещена в сторону точки пиковой мощности. Поскольку панели являются устройствами постоянного тока, необходимо использовать преобразователи постоянного тока в постоянный для преобразования полного сопротивления одной цепи (источника) в другую цепь (нагрузку). Изменение продолжительности включения преобразователя постоянного тока в постоянный приводит к изменению импеданса, что видно на панели. При определенном импедансе (т.е. скважности) рабочая точка будет в точке передачи пиковой мощности. Кривая IV панели может значительно изменяться в зависимости от атмосферных условий, таких как освещенность и температура. Следовательно,Невозможно зафиксировать скважность при таких динамически изменяющихся условиях эксплуатации.

Реализации MPPT используют алгоритмы, которые часто измеряют напряжения и токи панели, а затем при необходимости регулируют коэффициент заполнения. Для реализации алгоритмов используются микроконтроллеры. В современных реализациях часто используются более крупные компьютеры для аналитики и прогнозирования нагрузки.

Классификация [ править ]

Контроллеры могут использовать несколько стратегий для оптимизации выходной мощности массива. Трекеры максимальной мощности могут реализовывать различные алгоритмы и переключаться между ними в зависимости от условий работы массива. [12]


Возмущать и наблюдать [ править ]

В этом методе контроллер регулирует напряжение на небольшую величину от массива и измеряет мощность; если мощность увеличивается, предпринимаются дальнейшие регулировки в этом направлении до тех пор, пока мощность не перестанет увеличиваться. Этот метод называется методом возмущения и наблюдения и является наиболее распространенным, хотя этот метод может приводить к колебаниям выходной мощности. [13] [14] Это называется методом подъема на холм , потому что он зависит от подъема кривой мощности по отношению к напряжению ниже точки максимальной мощности и падения выше этой точки. [15] Возмущение и наблюдение - наиболее часто используемый метод MPPT из-за простоты его реализации. [13]Метод возмущения и наблюдения может привести к высочайшей эффективности при условии, что будет принята правильная прогнозирующая и адаптивная стратегия восхождения на холм. [16] [17]

Добавочная проводимость [ править ]

В методе инкрементной проводимости контроллер измеряет инкрементные изменения тока и напряжения фотоэлектрической матрицы, чтобы предсказать эффект изменения напряжения. Этот метод требует большего количества вычислений в контроллере, но может отслеживать изменяющиеся условия быстрее, чем метод возмущения и наблюдения (P&O). В отличие от алгоритма P&O, он не вызывает колебаний выходной мощности. [18] Этот метод использует инкрементную проводимость ( ) фотоэлектрической матрицы для вычисления знака изменения мощности по отношению к напряжению ( ). [19] Метод приращения проводимости вычисляет точку максимальной мощности путем сравнения приращения проводимости ( ) с проводимостью массива ( ). Когда эти двое одинаковые () выходное напряжение - это напряжение MPP. Контроллер поддерживает это напряжение до тех пор, пока облучение не изменится и процесс не повторится.

Метод возрастающей проводимости основан на наблюдении, что в точке максимальной мощности , и что . Ток от массива может быть выражен в виде функции от напряжения: . Поэтому . Установка этого параметра равным нулю выходов: . Следовательно, точка максимальной мощности достигается, когда инкрементная проводимость равна отрицательному значению мгновенной проводимости. Характеристика кривой мощности-напряжения также показывает, что: когда напряжение меньше точки максимальной мощности,, так ; когда напряжение выше точки максимальной мощности, или. Таким образом, трекер MPP может узнать, где он находится на кривой мощности-напряжения, вычислив соотношение изменения тока / напряжения и самого текущего напряжения.

Текущая развертка [ править ]

В методе развертки тока используется форма волны развертки для тока массива PV, так что ВАХ массива PV получается и обновляется через фиксированные интервалы времени. Максимальное напряжение в точке мощности затем может быть вычислено по характеристической кривой с теми же интервалами. [20] [21]

Постоянное напряжение [ править ]

Термин «постоянное напряжение» в отслеживании MPP используется разными авторами для описания различных методов: один, в котором выходное напряжение регулируется до постоянного значения при всех условиях, и другой, в котором выходное напряжение регулируется на основе постоянного отношения к измеренное напряжение холостого хода ( ). Последний метод, напротив, упоминается некоторыми авторами как метод «открытого напряжения». [22]Если выходное напряжение поддерживается постоянным, попытки отслеживать точку максимальной мощности не предпринимаются, поэтому в строгом смысле это не метод отслеживания точки максимальной мощности, хотя он имеет некоторые преимущества в случаях, когда отслеживание MPP имеет тенденцию к сбою, и поэтому он иногда используется как дополнение к методу MPPT. В методе MPPT «постоянного напряжения» (также известном как «метод открытого напряжения») мощность, подаваемая на нагрузку, на мгновение прерывается, и измеряется напряжение холостого хода при нулевом токе. Затем контроллер возобновляет работу с напряжением, регулируемым в фиксированном соотношении, например 0,76, от напряжения холостого хода . [23] Обычно это значение, которое было определено как точка максимальной мощности, эмпирически или на основе моделирования, для ожидаемых условий эксплуатации.[24] [19] Таким образом, рабочая точка фотоэлектрической матрицы поддерживается рядом с MPP за счет регулирования напряжения массива и согласования его с фиксированным опорным напряжением. Значение такжеможет быть выбрано для обеспечения оптимальной производительности относительно других факторов, а также MPP, но центральная идея в этом методе заключается в том, чтоопределяется как отношение к. Одно из внутренних приближений в методе отношения «постоянного напряжения» состоит в том, что отношение напряжения MPP кявляется лишь приблизительно постоянным, поэтому остается место для дальнейшей возможной оптимизации.

Температурный метод [ править ]

Этот метод MPPT оценивает напряжение MPP ( ) путем измерения температуры солнечного модуля и сравнения ее с эталоном. [25] Поскольку изменения уровней облучения оказывают незначительное влияние на максимальное напряжение точки питания, их влияниями можно пренебречь - предполагается, что напряжение изменяется линейно с изменениями температуры.

Этот алгоритм вычисляет следующее уравнение:

Где:

- напряжение в точке максимальной мощности для данной температуры;

эталонная температура;

- измеренная температура;

- температурный коэффициент (указан в даташите ).

Преимущества [ править ]

  • Простота: этот алгоритм решает одно линейное уравнение. Следовательно, он не потребляет много вычислительной мощности.
  • Может быть реализован как по аналоговой, так и по цифровой схеме.
  • Поскольку температура меняется со временем медленно, стационарные колебания и нестабильность отсутствуют.
  • Низкая стоимость: датчики температуры обычно очень дешевы.
  • Устойчивый к шуму .

Недостатки [ править ]

  • Ошибкой оценки нельзя пренебречь для низких уровней облучения (например, ниже 200 Вт / м 2 ).

Сравнение методов [ править ]

И возмущение, и наблюдение, и инкрементная проводимость являются примерами методов «подъема на холм», которые могут найти локальный максимум кривой мощности для рабочего состояния фотоэлектрической батареи и, таким образом, обеспечить истинную точку максимальной мощности. [6] [15] [24]

Метод возмущения и наблюдения требует колебательной выходной мощности около точки максимальной мощности даже при устойчивой освещенности.

Метод инкрементной проводимости имеет преимущество перед методом возмущения и наблюдения (P&O) в том, что он может определять точку максимальной мощности без колебаний вокруг этого значения. [13] Он может выполнять отслеживание точки максимальной мощности в быстро меняющихся условиях облучения с более высокой точностью, чем метод возмущения и наблюдения. [13] Однако метод возрастающей проводимости может вызывать колебания (непреднамеренно) и может работать нестабильно в быстро меняющихся атмосферных условиях. Частота дискретизации снижена из-за более высокой сложности алгоритма по сравнению с методом P&O. [19]

В методе постоянного отношения напряжений (или «открытого напряжения») ток от фотоэлектрической матрицы должен быть на мгновение установлен равным нулю для измерения напряжения холостого хода, а затем затем установлен на заранее определенный процент от измеренного напряжения, обычно около 76%. [19] Энергия может быть потрачена впустую, пока ток установлен на ноль. [19] Приближение 76% в качестве отношения не обязательно является точным. [19] Несмотря на простоту и низкую стоимость реализации, прерывания снижают эффективность массива и не гарантируют нахождение фактической точки максимальной мощности. Однако эффективность некоторых систем может превышать 95%. [23]

Размещение MPPT [ править ]

Традиционные солнечные инверторы выполняют MPPT для всей фотоэлектрической батареи (объединения модулей) в целом. В таких системах один и тот же ток, продиктованный инвертором, протекает через все модули в цепочке (серии). Поскольку разные модули имеют разные кривые IV и разные MPP (из-за производственных допусков, частичного затенения, [26] и т.д.), эта архитектура означает, что некоторые модули будут работать ниже их MPP, что приведет к снижению эффективности. [27]

Некоторые компании (см. Оптимизатор мощности ) теперь размещают устройство отслеживания точки максимальной мощности в отдельные модули, позволяя каждому работать с максимальной эффективностью, несмотря на неравномерное затенение, загрязнение или электрическое несоответствие.

Данные предполагают, что наличие одного инвертора с одним MPPT для проекта, который имеет одинаковое количество модулей, ориентированных на восток и запад, не представляет недостатков по сравнению с наличием двух инверторов или одного инвертора с более чем одним MPPT. [28]

Работа от батареек [ править ]

Ночью автономная фотоэлектрическая система может использовать батареи для питания нагрузок. Хотя напряжение полностью заряженной аккумуляторной батареи может быть близко к максимальному напряжению точки питания фотоэлектрической панели, это маловероятно на восходе солнца, когда аккумулятор частично разряжен. Зарядка может начаться при напряжении значительно ниже максимального напряжения точки питания фотоэлектрической панели, и MPPT может устранить это несоответствие.

Когда батареи в автономной системе полностью заряжены и производство фотоэлектрических модулей превышает местные нагрузки, MPPT больше не может работать с панелью на максимальной точке мощности, поскольку избыточная мощность не имеет нагрузки для ее поглощения. Затем MPPT должен сместить рабочую точку фотоэлектрической панели от точки пиковой мощности до тех пор, пока производство точно не будет соответствовать спросу. (Альтернативный подход, обычно используемый в космических кораблях, заключается в отвлечении избыточной фотоэлектрической мощности на резистивную нагрузку, позволяя панели непрерывно работать на пиковом уровне мощности, чтобы максимально охладить панель [29] ).

В фотоэлектрической системе, подключенной к сети, вся энергия, передаваемая от солнечных модулей, будет отправляться в сеть. Следовательно, MPPT в фотоэлектрической системе, подключенной к сети, всегда будет пытаться использовать фотоэлектрические модули на максимальной мощности.

Ссылки [ править ]

  1. ^ Seyedmahmoudian, M .; Horan, B .; Вскоре Т. Кок; Rahmani, R .; Тхан Оо, А. Муанг; Мехилеф, С .; Стойчевский, А. (2016-10-01). «Современные методы MPPT на основе искусственного интеллекта для смягчения эффектов частичного затенения на фотоэлектрических системах - обзор». Обзоры возобновляемых и устойчивых источников энергии . 64 : 435–455. DOI : 10.1016 / j.rser.2016.06.053 .
  2. ^ Seyedmahmoudian, Мехди; Хоран, Бен; Рахмани, Расул; Маунг Тан Оо, Аман; Стойчевский, Алекс (02.03.2016). «Эффективное отслеживание точки максимальной мощности фотоэлектрической системы с использованием новой техники» . Энергии . 9 (3): 147. DOI : 10,3390 / en9030147 .
  3. ^ «Что такое отслеживание точки максимальной мощности (MPPT)» .
  4. Али, Али Наср Аллах; Saied, Mohamed H .; Мостафа, МЗ; Абдель-Монейм, TM (2012). «Обзор максимальных методов PPT фотоэлектрических систем». Обзор методов максимальной PPT фотоэлектрических систем - IEEE Xplore . С. 1–17. DOI : 10.1109 / EnergyTech.2012.6304652 . ISBN 978-1-4673-1835-8. S2CID  10207856 .
  5. ^ Seyedmahmoudian, M .; Rahmani, R .; Мехилеф, С .; Maung Than Oo, A .; Стойцевски, А .; Вскоре Тей Кок; Гхандхари, А.С. (01.07.2015). «Моделирование и аппаратная реализация нового метода слежения за точкой максимальной мощности для фотоэлектрической системы с частичным затемнением с использованием гибридного метода DEPSO». IEEE Transactions по устойчивой энергетике . 6 (3): 850–862. Bibcode : 2015ITSE .... 6..850S . DOI : 10.1109 / TSTE.2015.2413359 . ISSN 1949-3029 . S2CID 34245477 .  
  6. ^ a b Сейедмахмудиан, Мохаммадмехди; Мохамади, Араш; Кумары, Сварна (2014). «Сравнительное исследование процедуры и современного состояния традиционных методов слежения за точкой максимальной мощности для фотоэлектрических систем» . Международный журнал компьютерной и электротехники . 6 (5): 402–414. DOI : 10.17706 / ijcee.2014.v6.859 .
  7. ^ Сейедмахмудиан, Мохаммадмехди; Мехилеф, Саад; Рахмани, Расул; Юсоф, Рубия; Ренани, Эхсан Таслими (4 января 2013 г.). «Аналитическое моделирование фотоэлектрических систем с частичным затемнением» . Энергии . 6 (1): 128–144. DOI : 10.3390 / en6010128 .
  8. ^ Суравдханивар, Сонали; Диван, Ритеш (июль 2012 г.). «Исследование слежения за точкой максимальной мощности с использованием метода возмущения и наблюдения». Международный журнал перспективных исследований в области компьютерной инженерии и технологий . 1 (5): 106–110.
  9. ^ Сейедмахмудиан, Мохаммадмехди; Мехилеф, Саад; Рахмани, Расул; Юсоф, Рубия; Шоджаи Али Асгар (01.03.2014). «Отслеживание точки максимальной мощности частично затемненной фотоэлектрической решетки с использованием эволюционного алгоритма: метод оптимизации роя частиц». Журнал возобновляемой и устойчивой энергетики . 6 (2): 023102. DOI : 10,1063 / 1,4868025 . ЛВП : 1959,3 / 440382 . ISSN 1941-7012 . 
  10. ^ "Чикагский университет GEOS24705 Solar Photovoltaics EJM May 2011" (PDF) .
  11. ^ Зи, Саймон М. (1981). Физика полупроводниковых приборов (2-е изд.). п. 796 .
  12. ^ Rahmani, R .; Seyedmahmoudian, M .; Mekhilef, S .; Юсоф, Р .; 2013. Внедрение контроллера слежения за точкой максимальной мощности с нечеткой логикой для фотоэлектрической системы. Американский журнал прикладных наук, 10: 209-218.
  13. ^ a b c d «Отслеживание максимальной мощности» . zone.ni.com . zone.ni.com. Архивировано из оригинала на 2011-04-16 . Проверено 18 июня 2011 .
  14. ^ "Расширенный алгоритм управления MPPT фотоэлектрической системой" (PDF) . solarbuildings.ca. Архивировано из оригинального (PDF) 19 декабря 2013 года . Проверено 19 декабря 2013 .
  15. ^ а б Хом, Д.П .; Ропп, Мэн (2003). «Сравнительное исследование алгоритмов отслеживания точек максимальной мощности» . Прогресс в фотогальванике: исследования и приложения . 11 : 47–62. DOI : 10.1002 / pip.459 . S2CID 10668678 . 
  16. ^ "Улучшение характеристик метода отслеживания точки максимальной мощности и наблюдения" . actapress.com. 2006-03-09 . Проверено 18 июня 2011 . Cite journal requires |journal= (help)
  17. ^ Чжан, Q .; Hu, C .; Chen, L .; Amirahmadi, A .; Куткут, Н .; Батарсех, И. (2014). «Метод MPPT с итерацией центральной точки с применением на частотно-модулированном LLC-микроинверторе». IEEE Transactions по силовой электронике . 29 (3): 1262–1274. Bibcode : 2014ITPE ... 29.1262Z . DOI : 10.1109 / tpel.2013.2262806 . S2CID 29377646 . 
  18. ^ «Оценка методов отслеживания точки максимальной мощности на основе микроконтроллера с использованием платформы dSPACE» (PDF) . itee.uq.edu.au. Архивировано из оригинального (PDF) 26 июля 2011 года . Проверено 18 июня 2011 .
  19. ^ a b c d e f "Алгоритмы MPPT" . powerelectronics.com. Апрель 2009 . Проверено 10 июня 2011 .
  20. ^ Эсрам, Тришан; Чепмен, П. Л. (2007). «Сравнение методов отслеживания точки максимальной мощности фотоэлектрических решеток». IEEE Transactions по преобразованию энергии . 22 (2): 439–449. Bibcode : 2007ITEnC..22..439E . DOI : 10.1109 / TEC.2006.874230 . S2CID 31354655 . 
  21. ^ Бодур, Мехмет; Эрмис, М. (1994). «Отслеживание точки максимальной мощности для фотоэлектрических солнечных панелей малой мощности». Труды 7-й Средиземноморской электротехнической конференции : 758–761. DOI : 10.1109 / MELCON.1994.380992 . ISBN 0-7803-1772-6. S2CID  60529406 .
  22. ^ «Энергетическое сравнение методов MPPT для фотоэлектрических систем» (PDF) . wseas . Проверено 18 июня 2011 .
  23. ^ а б Фердоус, С.М. Мохаммад, Махир Асиф; Насрулла, Фархан; Салеке, Ахмед Мортуза; Муталиб, АЗМ Шахриар (2012). 2012 7-я Международная конференция по электротехнике и вычислительной технике . ieee.org . С. 908–911. DOI : 10.1109 / ICECE.2012.6471698 . ISBN 978-1-4673-1436-7. S2CID  992906 .
  24. ^ a b «Оценка методов отслеживания точки максимальной мощности на основе микроконтроллера с использованием платформы dSPACE» (PDF) . itee.uq.edu.au. Архивировано из оригинального (PDF) 26 июля 2011 года . Проверено 18 июня 2011 .
  25. ^ «Подход MPPT, основанный на измерениях температуры, применяемых в фотоэлектрических системах - Публикация конференции IEEE». DOI : 10.1109 / ICSET.2010.5684440 . S2CID 8653562 .  Cite journal requires |journal= (help)
  26. ^ Seyedmahmoudian, M .; Мехилеф, С .; Rahmani, R .; Юсоф, Р .; Ренани, Е.Т. Аналитическое моделирование фотоэлектрических систем с частичным затемнением. Энергия 2013, 6, 128-144.
  27. ^ «Переверните свое мышление: выжимайте больше энергии из солнечных панелей» . blogs.scientificamerican.com . Проверено 5 мая 2015 .
  28. ^ "InterPV.net - Журнал Global PhotoVoltaic Business Magazine" . interpv.net .
  29. ^ "Почему желательно направить избыточную фотоэлектрическую мощность на резистивную нагрузку?" .

Дальнейшее чтение [ править ]

  • Бялашевич, JT (июль 2008 г.). «Системы возобновляемой энергии с фотоэлектрическими генераторами: работа и моделирование». IEEE Transactions по промышленной электронике . 55 (7): 2752–2758. DOI : 10.1109 / TIE.2008.920583 . S2CID  20144161 .
  • Попони, Даниэле (апрель 2003 г.). «Анализ путей распространения фотоэлектрических технологий на основе кривых опыта». Солнечная энергия . 74 (4): 331–340. Bibcode : 2003SoEn ... 74..331P . DOI : 10.1016 / S0038-092X (03) 00151-8 .
  • Маркварт, Томас, изд. (Июль 2000 г.). Солнечное электричество (2-е изд.). Вайли. С.  298 . ISBN 978-0-471-98852-6.

Внешние ссылки [ править ]

СМИ, связанные с трекером максимальной мощности на Викискладе?

  • Трекер MPPT Даниэля Ф. Бутая (на базе Microchip PIC )