MIQE


The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines are a set of protocols for conducting and reporting quantitative real-time PCR experiments and data, as devised by Bustin et al. in 2009.[1] They were devised after a paper was published in 2002 that claimed to detect measles virus in children with autism through the use of RT-qPCR, but the results proved to be completely unreproducible by other scientists.[2] The authors themselves also did not try to reproduce them and the raw data was found to have a large amount of errors and basic mistakes in analysis. This incident prompted Stephen Bustin to create the MIQE guidelines to provide a baseline level of quality for qPCR data published in scientific literature.[2]

The MIQE guidelines were created due to the low quality of qPCR data submitted to academic journals at the time, which was only becoming more common as Next Generation Sequencing machinery allowed for such experiments to be run for a cheaper cost. Because the technique is utilized across all of science in multiple fields, the instruments, methods, and designs of how qPCR is used differs greatly. To help improve overall quality, the MIQE guidelines were made as generalized suggestions on basic experimental procedures and forms of data that should be collected as a minimum level of reported information for other researchers to understand and use when reading the published material. Setting up a recognized and largely agreed upon set of guidelines such as these was deemed important by the scientific community especially due to the ever increasing amount of scientific work coming from developing countries with many different languages and protocols.[3]

In 2009, an international group of scientists headed by Stephen Bustin collaborated to put together a set of guidelines on how to perform qPCR and what forms of data should be collected and published in the process. This also allowed editors and reviewers of scientific journals to employ the guidelines when looking over a submitted paper that included qPCR data. Thus, the guidelines were set up as a sort of checklist for each step of the procedure with certain items being marked as essential (E) when submitting data for publication and others marked as just desirable (D).[4]

An additional version of the guidelines was published in September 2010 for use with fluorescence-based quantitative real-time PCR. It also acted as a précis for the broader form of the guidelines.[5] Other researchers have been creating further versions for specific forms of qPCR that may require a supplementary or different set of items to check, including single-cell qPCR[6] and digital PCR (dPCR).[7] Appropriate adherence to the existing MIQE guidelines has also been overviewed in other scientific areas, including photobiomodulation[8] and clinical biomarkers.[9]

It was noted by Bustin in 2014 (and again by him in 2017) that there was some amount of uptake and usage of the MIQE guidelines within the scientific community, but there were still far too many published papers with qPCR experiments that lacked even the most basic of data presentation and proper confirmation of effectiveness for said data. These studies retained major reproducibility issues, where the conclusions of their evidence could not be replicated by other researchers, throwing the initial results into doubt. All of this was despite many papers directly citing Bustin's original MIQE publication, but not following through on the guideline checklist of material in their own experiments.[2][10] However, some researchers have pointed out at least some success, with a number of papers being rejected by academic journals for publication due to failing to pass MIQE checklists. Other studies have been retracted after the fact once their lack of proper data to pass the MIQE guidelines was noted and publicly pointed out to the journal editors.[11]