Безопасное простое число


Безопасное простое число — это простое число вида 2p + 1, где p также простое (и наоборот, p есть простое число Софи Жермен). Несколько первых безопасных простых чисел:

За исключением 7, безопасное простое число q имеет форму 6k − 1 или, что эквивалентно, q ≡ 5 (mod 6) — где p > 3. Таким же образом, за исключением 5, безопасное простое число q представимо в форме 4k − 1 или, что эквивалентно, q ≡ 3 (mod 4) — тривиальное утверждение, поскольку (q − 1) / 2 должно быть нечетным натуральным числом. Комбинируя обе формы с использованием НОК(6,4) мы получим, что безопасное простое число q > 7 также должно быть представимо в виде 12k−1 или, что эквивалентно, q ≡ 11 (mod 12).

Простые числа такого вида названы безопасными ввиду их связи с сильными простыми числами. Простое число q называется строгим простым числом, если q + 1 и q − 1 оба имеют большие простые делители[уточнить]. Для безопасного простого числа q = 2p + 1, число q − 1 , естественно, имеет большой делитель, а именно p, так что q удовлетворяет частично критерию сильного простого числа. Время работы некоторых методов разложения на множители числа, имеющего q в качестве делителя зависит частично от величины простых делителей q − 1. Это верно, например, для ρ-aлгоритм Полларда +1 и −1 методов. Хотя большинство известных эффективных методов разложения не зависят от величины простых делителей в разложении q−1, это считается, тем не менее, важным для шифрования: например, ANSI X9.31 стандарт требует, чтобы сильные простые числа (не безопасное простое) использовалось для RSA.

Безопасные простые числа важны также в криптографии в виду их использования в подходах, основанных на дискретных логарифмах, таких как алгоритм Диффи — Хеллмана. Если 2p + 1 безопасное простое, мультипликативная группа чисел по модулю 2p + 1 имеет подгруппу высокого порядка. Обычно эта та подгруппа, которая нужна, и причина использования безопасных простых чисел заключается в том, что модуль мал относительно p.

Безопасные простые числа, удовлетворяющие также некоторым условиям, могут быть использованы для генерации псевдослучайных чисел для применения в методе Монте-Карло.

Не существует теста для безопасных простых, какие есть для чисел Ферма и чисел Мерсенна. Однако, может быть использован критерий Поклингтона, позволяющий проверить простоту 2p+1, когда простота p установлена.