В евклидовом пространстве отрезок прямой — часть прямой, ограниченная двумя точками. Точнее: это множество, состоящее из двух различных точек данной прямой (которые называются концами отрезка) и всех точек, лежащих между ними (которые называются его внутренними точками). Отрезок, концами которого являются точки и , обозначается символом . Расстояние между концами отрезка называют его длиной и обозначают или .
Обычно у отрезка прямой неважно, в каком порядке рассматриваются его концы: то есть отрезки и представляют собой один и тот же отрезок. Если у отрезка определить направление, то есть порядок перечисления его концов, то такой отрезок называется направленным, или вектором. Например, направленные отрезки и не совпадают. Отдельного обозначения для направленных отрезков нет — то, что у отрезка важно его направление, обычно указывается особо.
Это приводит к понятию свободного вектора — класса всех возможных векторов, отличающихся друг от друга только параллельным переносом, которые принимаются равными.
Отрезок числовой (координатной) прямой (иначе числовой отрезок, сегмент) — множество вещественных чисел , удовлетворяющих неравенству , где заранее заданные вещественные числа и называются концами (граничными точками) отрезка. В противоположность им, остальные числа , удовлетворяющие неравенству , называются внутренними точками отрезка[1].
Отрезок обычно обозначается :
Любой отрезок, по определению, заведомо включён в множество вещественных чисел. Отрезок является замкнутым промежутком.