Циклический порядок


Циклический порядок — способ упорядочивания объектов таким образом, чтобы последовательное движение по порядку после полного обхода совокупности возвращалось на начальный объект движения; полный порядок, «соединённый концами» в цикл. В отличие от структур, изучаемых в теории порядков, такой порядок не моделируется бинарным отношением, таким как «a < b», например, нельзя сказать, что восток «больше по часовой стрелке», чем запад; вместо этого циклический порядок определяется как тернарное отношение [a, b, c], означающее, что «после a достигается b раньше, чем c». Например, [Июнь, Октябрь, Февраль]. Тернарное отношение называется циклическим порядком, если оно является циклическим (), асимметричным, транзитивным и полным. Порядок, не обладающий всеми этими свойствами, кроме полноты, называется частичным циклическим порядком[англ.].

Множество с циклическим порядком называется циклически упорядоченным множеством, или просто циклом[nb]. Некоторые циклы дискретны, имея лишь конечное число элементов — имеется семь дней недели, четыре стороны света, двенадцать нот в хроматической гамме и три игрока в игре «камень, ножницы, бумага». В конечном цикле каждый элемент имеет «следующий элемент» и «предыдущий элемент». Существуют также непрерывные циклы с бесконечным числом элементов, такие как ориентированная единичная окружность на плоскости.

Циклические порядки тесно связаны с более известными линейными порядками, которые упорядочивают объекты вдоль прямой. Любой линейный порядок может быть свёрнут в цикл и любой циклический порядок может быть разрезан в точке, получая линейный порядок. Эти операции, вместе со связанными построениями интервалов и накрывающими отображениями, означают, что вопросы о циклических порядках могут часто быть трансформированы в вопросы о линейных порядках. Циклы имеют больше симметрий, чем линейные порядки, и они часто естественным образом возникают как вычеты линейных структур, как в конечных циклических группах или вещественных проективных прямых[англ.].

Циклический порядок на множестве X с n элементами подобен расположению элементов множества X на циферблате с n часами. Каждый элемент x из X имеет «следующий элемент» и «предыдущий элемент» и выбирая либо последующие, либо предыдущие элементы цикла, можно пройти в точности один раз через все элементы x(1), x(2), ..., x(n).