Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску
Правильный октаэдр

В музыкальных строев , то hexany , изобретенный ERV Вильсона , [1] представляет собой один из самых простых структур , найденных в его кодовыми Наборы продуктов .

Это называется нецентрированной структурой, что означает, что в ней нет тонизирующего средства. Это достигается за счет использования согласных отношений в отличие от методов диссонанса, обычно используемых при атональности. Хотя он часто и сбивает с толку пересекается с родом Эйлера – Фоккера , последующая звездчатость наборов комбинированных произведений Вильсона (CPS) выходит за рамки этого рода. Род Эйлера Фоккера не рассматривает 1 как возможный член множества, кроме как в качестве отправной точки. Количество вершин в его комбинационных наборах следует за числами в треугольнике Паскаля.. В этой конструкции гексана является третьим поперечным сечением четырехфакторного набора и первым нецентрированным. гексани - это название, которое Эрв Уилсон дал шести банкнотам в наборе комбинированных продуктов 2 из 4, сокращенно 2 * 4 CPS. [2]

Гексани можно рассматривать как аналог октаэдра . Ноты расположены так, что каждая точка представляет высоту звука, каждое ребро - интервал, а каждая граница - трезвучие. Таким образом, в нем восемь интонационных трезвучий, в которых каждое трезвучие имеет две общие ноты с тремя другими аккордами. Каждая триада встречается только один раз, а ее инверсия представлена ​​тремя противоположными тонами. Ребра октаэдра показывают музыкальные интервалы между вершинами, обычно выбираемые как согласные интервалы из гармонического ряда. Точки представляют собой музыкальные ноты, а три ноты, образующие каждую из треугольных граней, представляют музыкальные триады. Уилсон также указал и исследовал идею мелодичных гексан.

Проще говоря, гексани - это набор 2 из 4. Он строится путем одновременного использования любых четырех факторов и набора из двух, а затем их попарного умножения. Например, коэффициенты гармоник 1, 3, 5 и 7 объединяются парами 1 * 3, 1 * 5, 1 * 7, 3 * 5, 3 * 7, 5 * 7, в результате получается 1, 3, 5, 7 Гексани. Ноты обычно сдвинуты на октаву, чтобы поместить их все в одну октаву, что не влияет на отношения интервалов и созвучие трезвучий. Возможность того, что октава является решением, не выходит за рамки концепции Уилсона и используется в случаях размещения более крупных наборов комбинированных продуктов на универсальных клавиатурах.

Тюнинг [ править ]

Это трехмерная версия гексаны.

Ортографическая проекция.

Hexanyfacets.gif

Гексания - это фигура, содержащая как показанные треугольники, так и соединительные линии между ними.



В этой 2D-конструкции отношения интервалов такие же. См. Также рисунок два в статье Крейга Грейди. [3]


Например, грань с вершинами 3 × 5, 1 × 5, 5 × 7 является отональной (мажорной) аккордой, поскольку ее можно записать как 5 × (1, 3, 7), используя гармоники с низким номером . 5 × 7, 3 × 7, 3 × 5 является утональным аккордом (минорного типа), поскольку его можно записать как 3 × 5 × 7 × (1/3, 1/5, 1/7) с использованием младших номеров. субгармоники .

Чтобы превратить это в обычную гармоническую конструкцию с 1/1 в качестве первой ноты, все ноты сначала уменьшаются до октавы. Поскольку гармоническая конструкция, как назвал ее Эрв, он не считал ее гаммой и в ней еще нет 1/1, любую выбранную ноту можно использовать для разделения каждой ноты до октавного уменьшения. Обозначение соотношений здесь показывает соотношение частот нот. Если 1/1 - 500 герц, то 6/5 - 600 герц и так далее.

Связь с треугольником Паскаля [ править ]

Полный ряд треугольника Паскаля для гиперкуба в этой конструкции имеет длину 1 (одна вершина), 4 (тетраэдр), 6 (гексани), 4 (другая тетрада), 1. Идея распространяется на другие числа измерений, например, поперечные сечения пятимерного куба дают две версии декани, шкалу из десяти нот, богатую тетрадами, трезвучиями и диадами, которая также содержит много гексаний. [4] В шести измерениях та же конструкция дает 20-нотную эйкосани, которая еще более богата аккордами. В нем есть пятерки, тетрады и триады, а также гексаны и деканы. [4]

В случае трехмерного куба обычно рассматривается весь куб как единая восьмизначная шкала, октание - тогда сечения равны 1, 3 (триада), 3 (другая триада), 1, берется по любой из четырех главных диагоналей куба.

Координаты треугольника Паскаля из комбинированных наборов продуктов [ править ]

Первый ряд (квадрат):
00
10 01
11

Второй ряд:
000100
010 001 триада (треугольник)
110 101011 триада (треугольник)
111

Третий ряд
0000
1000 0100 0010 0001 тетрада ( тетраэдр или 3- симплекс )
1100 1010 1001 0110 0101 0011 гексан ( октаэдр )
1110 1101 1011 0111 тетрада
1111

Октаэдр - это ребро, двойственное тетраэдру , или выпрямленный тетраэдр.

Четвертый ряд
00000
10000 01000 00100 00010 00001 пентада (4- симплекс или пентахорон - четырехмерный тетраэдр )
11000 10100 10010 10001 01100 01010 01001 00110 00101 00011 2) 5 деканов (10 вершин, выпрямленных 4-симплекс)
00111 01011 0110101 01110 10011 10 10110 11001 11010 11100 3) 5 деканов (10 вершин)
01111 10111 11011 11101 11110 пентада
11111

Выпрямляется 4- симплекс , который является математическим названием для геометрической формы в dekany также известна как dispentachoron

Пятая строка
000000
100000 010000 001000 000100 000010 000001 гексад (5- симплекс или гексатерон - пятимерный тетраэдр )
110000 101000 100100 100010 100001 011000 010100 010010 010001 001100 001010 001001 000110 000101 000011 2) 6 пентадеканов (15 вершин, выпрямленных )
111000 110100 110010 110001 101100 101010 101001 100110 100101 100011 011100 011010 011001 010110 010101 010011 001110 001101 001011 000111 eikosany (20 вершин, двунаправленная, 5-симплексная)
001111 010111 011011 1011011110111 1011101 101111 010111 011011 10110111 1011101 1011101 1110111 1011101 1110111 1011101 вершины)
011111 101111 110111 111011 111101 111110 гексад
111111


Деканы - это ребро, двойное к 4-симплексу. Точно так же геометрическая фигура для пентадеканы - это ребро, двойственное к 5-симплексу. Деканы кулачка могут быть сделаны путем соединения вместе средних точек краев 4-симплекса и аналогично для пентадеканы и 5-симплекса.


Точно так же вершины декани при масштабировании на 1/2 перемещаются в средние точки ребер 4-симплекса, а вершины pentadekany перемещаются в средние точки ребер 5-симплекса, и так далее во всех более высоких измерениях.

Вершины эйкосаны при масштабировании на 1/3 перемещаются в центры 2D граней 5-симплекса. В трехмерном кубе 111 при масштабировании на 1/3 перемещается к средней точке 100 010 001, где каждый вектор ребер проходит на одинаковое расстояние вдоль длинной диагонали куба. 11100 перемещается в центр равностороннего треугольника со шнурами 10000 01000 00100 и аналогично для всех остальных вершин эйкосаны.

Геометрическая фигура для эйкосани - это лицо, двойное к 5-симплексу или двунаправленному 5-симплексу , двойное его 2D-грани, поскольку оно также имеет 3D и 4D грани.

Аналогичная картина для фигур 3) 7, 3) 8 и т. Д. Во всех высших измерениях.

Точно так же в восьми измерениях фигура, полученная при использовании всех перестановок 4 из 8, представляет собой трехмерную грань, двойную для 7-симплекса, или 3-выпрямленного 7-симплекса, поскольку 1111, масштабированный на 1/4, перемещается в центр трехмерного обычного грань тетраэдра 1000 0100 0010 0001 и т. д.

В музыке [ править ]

Композиторы, в том числе Крейг Грэди , Дэниел Джеймс Вольф и Джозеф Персон , использовали структуры высоты тона, основанные на гексании. [ необходима цитата ]

См. Также [ править ]

  • Род Эйлера – Фоккера

Ссылки [ править ]

  1. ^ Чалмерс, Джон Х. (1993). Разделы тетрахорда: прологомен построения музыкальных гамм , стр.116. Лягушка Пик Музыка. ISBN  978-0-945996-04-0 .
  2. ^ [ автор отсутствует ] (1993). Музыкальные произведения, выпуски 55–60 , с.43. Музыкальная галерея.
  3. ^ Грейди, Kraig (1991). "Гексана Эрвина Уилсона" (PDF) . Просто интонация . 7 (1): 8–11.
  4. ^ а б Уилсон, Эрв. «Д'Алессандро, как ураган, рисунки 6b, 6c, 19, 20 и 20b» (PDF) . Xenharmonikon . 12:10 , 21.

Дальнейшее чтение [ править ]

  • Грэди, Крейг (1991), «Гексани Эрвина Уилсона» (PDF) , Just Intonation , 7 (1), стр. 8–11
  • Шимер, Грег, «Закаленные деканы: эффект хоруса с использованием микротональных интервалов, основанный на простой интонации» (PDF) , Труды 7-й Международной конференции по музыкальному восприятию и познанию, Сидней, 2002 , стр.[ мертвая ссылка ] (см. раздел «Фон»)

Внешние ссылки [ править ]

  • «Некоторые гексаны и алмазные решетки (и заготовки) из гексаны» , Архив Уилсона . Оригинальные бумаги гексани, показывающие разные грани и конфигурации, не собранные Эрвом Уилсоном (1967 г.)
  • "Архивы Уилсона" , Anaphoria.com
  • "гексани" , RobertInventor.com . С помощью гексаны вы можете повернуться и щелкнуть любую из ее вершин, ребер или граней, чтобы услышать аккорды.
  • «Шаблоны набора комбинаций продуктов» , Xenharmonikon IX (1986) Крейга Грейди.
  • «Eikosany Papers» , Anaphoria.com .
  • «Музыкальная геометрия» , Музыка и виртуальные цветы . Вступление. к музыкальной геометрии.
  • «Кувыркающиеся Декани» , «Необычные музыкальные гаммы», домашняя страница Дэйва Кинана . Декани Дэйва Кинана кувыркается в четырех измерениях - как музыкальная электронная таблица Excel