Алгебраическая поверхность


Алгебраическая поверхность — это алгебраическое многообразие размерности два. В случае геометрии над полем комплексных чисел алгебраическая поверхность имеет комплексную размерность два (как комплексное многообразие, если оно неособо), а потому имеет размерность четыре как гладкое многообразие.

Теория алгебраических поверхностей существенно более сложна, чем теория алгебраических кривых (включая компактные римановы поверхности, которые являются подлинными поверхностями (вещественной) размерности два). Однако много результатов было получено итальянской школой алгебраической геометрии уже почти сто лет назад.

В случае размерности единица многообразия классифицируются только по топологическому роду, но в размерности два разница между арифметическим родом[en] и геометрическим родом становится существенной, поскольку мы не можем различить бирационально лишь топологический род. Мы вводим понятие иррегулярности[en] для классификации поверхностей.

Первые пять примеров фактически бирационально эквивалентны. То есть, например, поле рациональных функций на кубической поверхности изоморфно полю рациональных функций на проективной плоскости, которое является полем рациональных функций от двух переменных. Декартово произведение двух кривых также является примером.

Бирациональная геометрия алгебраических поверхностей богата ввиду преобразования «раздутие» (которое известно также под названием «моноидальное преобразование»), при котором точка заменяется кривой всех ограниченных касательных направлений в ней (проективной прямой). Некоторые кривые могут быть стянуты, но существует ограничение (индекс самопересечения должен быть равен −1).

Обильный дивизор имеет то полезное свойство, что он является прообразом дивизора гиперплоскости некоторого проективного пространства, свойства которого хорошо известны. Пусть  — абелева группа, состоящая из всех дивизоров на S. Тогда, по теореме о пересечениях[en],