Теорема Римана — Роха


Теорема Римана — Роха связывает комплексный анализ связных компактных римановых поверхностей с чисто топологическим родом поверхности g, используя методы, которые могут быть распространены на чисто алгебраические ситуации.

Первоначально доказанная Риманом как неравенство Римана[1], теорема получила свой окончательный вид для римановых поверхностей после работы рано умершего студента Римана Густава Роха[2]. Позднее теорема была обобщена на алгебраические кривые и на многообразия.

Риманова поверхность X является топологическим пространством, которое локально гомеоморфно открытому подмножеству комплексных чисел. Кроме того, требуется, чтобы функции перехода между этими открытыми подмножествами были голоморфны. Последнее условие позволяет перенести на поверхность X понятия комплексного анализа, в частности можно говорить о голоморфных и мероморфных функциях на X.

Поверхность X будет предполагаться компактной.Род g римановой поверхности X — это число ручек поверхности. Например, род показанной справа римановой поверхности равен трём. Род можно также определить как половину первого числа Бетти, то есть половина комплексной размерности первой группы сингулярных гомологий H1(X, C) с комплексными коэффициентами. Род классифицирует компактные римановы поверхности с точностью до гомеоморфизма, то есть две такие поверхности гомеоморфны тогда и только тогда, когда их род совпадает. С другой стороны, теория Ходжа показывает, что род совпадает с (комплексной) размерностью пространства голоморфных 1-форм на X, так что род кодирует также комплексно-аналитическую информацию о римановой поверхности[3].

Дивизор D — это элемент свободной абелевой группы, порождённой точками поверхности. Эквивалентно, дивизор является конечной линейной комбинацией с целыми коэффициентами точек поверхности.

Известно, что множество R(f) конечно. Это следствие компактности X и того факта, что нули (ненулевой) голоморфной функции не имеют предельных точек. Таким образом, (f) является вполне определённым. Любой дивизор такого вида называется главным дивизором. Два дивизора, отличающиеся на главный дивизор, называются линейно эквивалентными. Дивизор мероморфной 1-формы определяется аналогично. Дивизор глобальной мероморфной 1-формы называется каноническим дивизором[англ.] (обычно обозначаемым K). Любые две мероморфные 1-формы дают линейно эквивалентные дивизоры, так что канонический дивизор однозначно определён с точностью до линейной эквивалентности.