Neurolysis


Neurolysis is the application of physical or chemical agents to a nerve in order to cause a temporary degeneration of targeted nerve fibers. When the nerve fibers degenerate, it causes an interruption in the transmission of nerve signals. In the medical field, this is most commonly and advantageously used to alleviate pain in cancer patients.[1]

The different types of neurolysis include celiac plexus neurolysis, endoscopic ultrasound guided neurolysis, and lumbar sympathetic neurolysis. Chemodenervation and nerve blocks are also associated with neurolysis.

Additionally, there is external neurolysis. Peripheral nerves move (glide) across bones and muscles. A peripheral nerve can be trapped by scarring of surrounding tissue which may lead to potential nerve damage or pain. An external neurolysis is when scar tissue is removed from around the nerve without entering the nerve itself.[2]

Neurolysis is a chemical ablation technique that is used to alleviate pain. Neurolysis is only used when the disease has progressed to a point where no other pain treatments are effective.[1] A neurolytic agent such as alcohol, phenol, or glycerol is typically injected into the nervous system. Chemical neurolysis causes deconstructive fibrosis which then disrupts the sympathetic ganglia. This results in a reduction of pain signals being transmitted throughout the nerves.[3] The effects generally last for three to six months.[1]

Certain neurolysis techniques have been reported to be used in the early 1900s for the treatment of pain by the neurologist Mathieu Jaboulay. Early reported neurolysis helped treat vasospastic disorders such as arterial occlusive disease before the introduction of endovascular procedures.[3]

Celiac plexus neurolysis (CPN) is the chemical ablation of the celiac plexus. This type of neurolysis is mainly used to treat pain associated with advanced pancreatic cancer. Traditional opioid medications used to treat pancreatic cancer patients may yield inadequate pain relief in the most advanced stages of pancreatic cancer, so the goal of CPN is to increase the efficiency of the medication. This in turn may lead to a decreased dosage, thereby decreasing the severity of the side effects.[3] CPN is also used to decrease the chances of a patient developing an addiction for opioid medications due to the large doses commonly used in treatment.[3]