Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску
Сечение берегового конца современного подводного кабеля связи.
1 - Полиэтилен
2 - Майларовая лента
3 - Проволока стальная многопроволочная
4 - Алюминиевый водный барьер
5 - Поликарбонат
6 - Медная или алюминиевая трубка
7 - Вазелин
8 - Оптические волокна
Подводные кабели прокладываются с помощью специальных кораблей- кабелеукладчиков , таких как современный René Descartes  [ fr ] , эксплуатируемый Orange Marine .

Подводный кабель связи является кабелем , проложенным на морской день между наземными станциями для выполнения телекоммуникационных сигналов через участки океана и море. Первые подводные кабели связи, проложенные в 1850-х годах, передавали телеграфный трафик, устанавливая первые мгновенные телекоммуникационные линии между континентами, такие как первый трансатлантический телеграфный кабель, который был введен в действие 16 августа 1858 года. Последующие поколения кабелей несли телефонный трафик, затем трафик передачи данных . Современные кабели используют оптоволоконную технологию для передачи цифровых данных, который включает телефонный трафик , Интернет и частные данные.

Современные кабели обычно имеют диаметр около 25 миллиметров (0,98 дюйма) и весят около 1,4 тонны на километр (2,5 коротких тонны на милю; 2,2 длинных тонны на милю) для глубоководных участков, составляющих большую часть участка трассы, хотя они больше и больше. на мелководных участках у берега используются более тяжелые кабели. [1] [2] Подводные кабели впервые соединили все континенты мира (кроме Антарктиды ), когда Ява была подключена к Дарвину, Северная территория , Австралия, в 1871 году в ожидании завершения Австралийской наземной телеграфной линии в 1872 году, соединяющейся с Аделаидой, Южная Австралия. , а оттуда в остальную часть Австралии. [3]

Ранняя история: телеграф и коаксиальные кабели [ править ]

Первые успешные испытания [ править ]

После того, как Уильям Кук и Чарльз Уитстон представили свой рабочий телеграф в 1839 году, идея создания линии подводных лодок через Атлантический океан стала рассматриваться как возможный триумф будущего. Сэмюэль Морзе провозгласил свою веру в него еще в 1840 году, и в 1842 году, он погружен провод, изолированный с просмоленной пенькой и каучуком , [4] [5] в воде гавани Нью - Йорке , и телеграфировал через него. Следующей осенью Уитстон провел аналогичный эксперимент в заливе Суонси . Хороший изоляторприкрыть провод и предотвратить утечку электрического тока в воду было необходимо для успеха длинной подводной линии. Индия каучук был судим Морица фон Якоби , в прусской инженера - электрика , еще в начале 19 - го века.

Еще одна изолирующая резинка, которую можно было расплавить при нагревании и легко нанести на проволоку, появилась в 1842 году. Гуттаперча , клейкий сок дерева Palaquium gutta , была представлена ​​в Европе Уильямом Монтгомери , шотландским хирургом на службе у британцев. Ост-Индская компания . [6] : 26–27 Двадцатью годами ранее Монтгомери видел в Сингапуре кнуты, сделанные из гуттаперчи , и полагал, что они будут полезны при изготовлении хирургических аппаратов. Майкл Фарадейи Уитстон вскоре обнаружил достоинства гуттаперчи как изолятора, а в 1845 году последний предложил использовать ее для покрытия провода, который предполагалось проложить от Дувра до Кале . [7] В 1847 году Уильям Сименс , в то время офицер прусской армии, проложил первый успешный подводный кабель с использованием гуттаперчевой изоляции через Рейн между Дойцем и Кельном . [8] В 1849 году Чарльз Винсент Уокер , электрик Юго-Восточной железной дороги , затопил двухмильный провод, покрытый гуттаперчей, у побережья Фолкстона, что было успешно испытано.[6] : 26–27

Первые коммерческие телеграммы [ править ]

Телеграфной марка британского и ирландского Magnetic Telegraph Co. Limited (с. 1862).

В августе 1850 года, ранее получив концессию от французского правительства, компания «Подводная телеграфная компания» Джона Уоткинса Бретта на Ла-Манше проложила первую линию через Ла-Манш , используя переделанный буксир « Голиаф» . Это была просто медная проволока, покрытая гуттаперчей , без какой-либо другой защиты, и она не увенчалась успехом. [6] : 192-193 [9] Тем не менее, эксперимент служил обеспечить возобновление концессии, а в сентябре 1851 года , защищенное ядре, или правда, кабель был заложен водостойкой Submarine Telegraph Company из правительства туши , Blazer, который буксировали через Ла-Манш. [6] : 192–193 [10] [7]

В 1853 году были проложены более успешные кабели, которые связали Великобританию с Ирландией , Бельгией и Нидерландами и пересекли пояса в Дании . [6] : 361 British & Irish Magnetic Telegraph Company завершила первый успешный ирландский ссылка 23 мая между Portpatrick и Donaghadee использованием Collier Уильям Хатт . [6] : 34–36 Это же судно использовалось для соединения из Дувра в Остенде в Бельгии компанией Submarine Telegraph. [6] :192–193 Между тем Electric & International Telegraph Company завершила строительство двух кабелей через Северное море , от Орфорд-Несса до Схевенингена , Нидерланды. Эти кабели были проложены пароходом Monarch ,который позже стал первым судном с постоянным оборудованием для прокладки кабеля. [6] : 195

В 1858 году пароход « Эльба» использовался для прокладки телеграфного кабеля из Джерси на Гернси , на Олдерни, а затем в Уэймут , причем кабель был успешно завершен в сентябре того же года. Вскоре возникли проблемы: к 1860 году произошло одиннадцать разломов из-за штормов, приливов и песков, а также износа скал. В отчете Института инженеров-строителей в 1860 г. изложены проблемы, которые помогут в будущих операциях по прокладке кабеля. [11]

Трансатлантический телеграфный кабель [ править ]

Первую попытку прокладки трансатлантического телеграфного кабеля предпринял Сайрус Вест Филд , который убедил британских промышленников профинансировать и проложить кабель в 1858 году. [7] Однако современные технологии не могли поддержать проект; с самого начала у него были проблемы, и он проработал всего месяц. Последующие попытки в 1865 и 1866 годах с крупнейшим в мире пароходом SS Great Eastern использовали более передовые технологии и дали первый успешный трансатлантический кабель. Позднее компания Great Eastern проложила первый кабель, идущий в Индию из Адена, Йемен, в 1870 году.

Британское доминирование раннего кабельного телевидения [ править ]

Операторы кабельного комнаты подводных телеграфных В настоящее время ГПО Центрального телеграфа «s в Лондоне с. 1898 г.

С 1850-х до 1911 года британские подводные кабельные системы доминировали на самом важном рынке - в Северной Атлантике . У британцев были преимущества как со стороны предложения, так и со стороны спроса. Что касается предложения, у Британии были предприниматели, готовые вложить огромные суммы капитала, необходимые для строительства, прокладки и обслуживания этих кабелей. С точки зрения спроса, огромная колониальная империя Великобритании привела к тому, что кабельные компании открыли для себя бизнес от новостных агентств, торговых и судоходных компаний и британского правительства. Во многих британских колониях проживало значительное количество европейских поселенцев, поэтому новости о них представляли интерес для широкой публики в родной стране.

Британские официальные лица полагали, что зависимость от телеграфных линий, проходящих через небританскую территорию, представляет угрозу безопасности, поскольку линии могут быть перерезаны, а сообщения могут быть прерваны во время войны. Они стремились создать всемирную сеть внутри империи, которая стала известна как All Red Line , и, наоборот, подготовили стратегии для быстрого прерывания коммуникаций с противником. [12] Самым первым действием Великобритании после объявления войны Германии в Первой мировой войне было то, что кабельное судно Alert (а не CS Telconia, как часто сообщается) [13] перерезало пять кабелей, связывающих Германию с Францией, Испанией и Азорскими островами, и через них Северная Америка. [14]После этого Германия могла общаться только по беспроводной связи, а это означало, что Комната 40 могла слушать.

Подводные кабели были экономической выгодой для торговых компаний, потому что владельцы судов могли общаться с капитанами, когда они достигли места назначения, и давать указания, куда идти дальше, чтобы забрать груз, на основе заявленных цен и информации о поставках. Британское правительство явно использовало кабели для поддержания административной связи с губернаторами по всей своей империи, а также для дипломатического взаимодействия с другими странами и связи со своими воинскими частями в военное время. Географическое положение британской территории также было преимуществом, поскольку она включала Ирландию на восточной стороне Атлантического океана и Ньюфаундленд в Северной Америке на западной стороне, что составляло кратчайший путь через океан, что значительно сокращало расходы.

Несколько фактов позволяют увидеть это доминирование в отрасли. В 1896 году в мире насчитывалось 30 кабелеукладчиков, 24 из которых принадлежали британским компаниям. В 1892 году британские компании владели и управляли двумя третями мировых кабелей, а к 1923 году их доля все еще составляла 42,7 процента. [15] Во время Первой мировой войны британская телеграфная связь была почти полностью бесперебойной, в то время как она могла быстро перерезать кабели Германии по всему миру. [12]

Кабель в Индию, Сингапур, Дальний Восток и Австралию [ править ]

Сеть Восточной телеграфной компании в 1901 году. Пунктирными линиями через Тихий океан обозначены запланированные кабели, проложенные в 1902–03 годах.

На протяжении 1860-х и 1870-х годов британский кабель расширялся на восток, в Средиземное море и Индийский океан. Кабель 1863 года в Бомбей (ныне Мумбаи ), Индия, обеспечил важную связь с Саудовской Аравией . [16] В 1870 году Бомбей был связан с Лондоном подводным кабелем в рамках совместной операции четырех кабельных компаний по указанию британского правительства. В 1872 году эти четыре компании были объединены в гигантскую глобальную компанию Eastern Telegraph , принадлежащую Джону Пендеру.. Филиалом Eastern Telegraph Company была вторая дочерняя компания, Eastern Extension, China and Australasia Telegraph Company, более известная как «Расширение». В 1872 году Австралия была соединена кабелем с Бомбеем через Сингапур и Китай, а в 1876 году кабель связал Британскую империю от Лондона до Новой Зеландии. [17]

Подводные кабели через Тихий океан [ править ]

Первые транстихоокеанские кабели, обеспечивающие телеграфные услуги, были построены в 1902 и 1903 годах, соединив материковую часть США с Гавайями в 1902 году и Гуам с Филиппинами в 1903 году. [18] Канада, Австралия, Новая Зеландия и Фиджи также были связаны в 1902 году с Канадой. транстихоокеанский сегмент All Red Line . [19] Япония была подключена к системе в 1906 году. Служба за пределами атолла Мидуэй была прекращена в 1941 году из-за Второй мировой войны, но оставшаяся часть оставалась в эксплуатации до 1951 года, когда FCC дала разрешение на прекращение операций. [20]

Первый транстихоокеанский телефонный кабель был проложен от Гавайев до Японии в 1964 году с удлинением от Гуама до Филиппин. [21] Также в 1964 году Тихоокеанская кабельная система Содружества (КОМПАК) с пропускной способностью 80 телефонных каналов была открыта для трафика из Сиднея в Ванкувер, а в 1967 году - система Содружества Юго-Восточной Азии (SEACOM) с пропускной способностью 160 телефонных каналов. открыт для движения. Эта система использовала микроволновое радио из Сиднея в Кэрнс (Квинсленд), кабель, идущий из Кэрнса в Маданг ( Папуа-Новая Гвинея ), Гуам , Гонконг , Кота-Кинабалу (столица Сабаха , Малайзия), Сингапур., затем по суше по микроволновому радио в Куала-Лумпур . В 1991 году кабельная система северной части Тихого океана была первой системой регенерации (т.е. с ретрансляторами ), которая полностью пересекла Тихий океан от материковой части США до Японии. Американская часть NPC производилась в Портленде, штат Орегон, с 1989 по 1991 год на предприятиях STC Submarine Systems, а затем и Alcatel Submarine Networks. Система была заложена компанией Cable & Wireless Marine на предприятии CS Cable Venture .

Строительство [ править ]

Посадка кабеля Италия-США (длина 4704 морских мили) на Рокавей-Бич, Квинс , Нью-Йорк, январь 1925 года.

Трансатлантические кабели 19-го века состояли из внешнего слоя из железа, а позже из стальной проволоки, обертывали индийскую резину, оборачивали гуттаперчу , которая окружала многожильный медный провод у сердечника. На участках, ближайших к каждой береговой пристани, имелись дополнительные бронепроволоки. Гуттаперча, природный полимер, похожий на резину, имел почти идеальные свойства для изоляции подводных кабелей, за исключением довольно высокой диэлектрической проницаемости, которая делала емкость кабеля высокой. Уильям Томас Хенли разработал в 1837 году машину для обмотки проводов шелковой или хлопковой нитью, которую он разработал для обертывания проводов для подводного кабеля с фабрикой в ​​1857 году, которая стала WT Henley's Telegraph Works Co., Ltd.[22] [23] Компания India Rubber, Gutta Percha and Telegraph Works , основанная семьей Сильвер и давшая это название району Лондона , поставляла сердечники Хенли, а также производила и прокладывала готовые кабели. [23] В 1870 году Уильям Хупер основал компанию Hooper's Telegraph Works для производства запатентованногосердечника из вулканизированной резины , вначале для снабжения других производителей готового кабеля, который начал конкурировать с сердечниками из гуттаперчи. Позже компания расширилась до полного производства и прокладки кабелей, включая строительство первого кабельного корабля, специально предназначенного для прокладки трансатлантических кабелей. [23] [24][25]

Гуттаперча и каучук не заменялись в качестве изоляции кабеля до тех пор, пока в 1930-х годах не был введен полиэтилен . Даже тогда этот материал был доступен только военным, и первый подводный кабель, использовавший его, был проложен только в 1945 году во время Второй мировой войны через Ла-Манш . [26] В 1920-х годах американские военные экспериментировали с кабелями с резиновой изоляцией в качестве альтернативы гуттаперче, поскольку американские интересы контролировали значительные поставки каучука, но не имели легкого доступа к производителям гуттаперчи. Разработка Джоном Т. Блейком в 1926 году депротеинизированной резины улучшила водонепроницаемость кабелей. [27]

Многие ранние кабели пострадали от нападения морской фауны. Изоляция могла быть съедена, например, видами Teredo (корабельный червь) и Xylophaga . Пенька, уложенная между броней из стальной проволоки, давала вредителям путь для проникновения внутрь. Поврежденная броня, что было нередко, также обеспечивала вход. Зарегистрированы случаи, когда акулы кусали кабели и нападали рыбы-пилы . В одном случае в 1873 году кит повредил кабель Персидского залива между Карачи и Гвадаром . Кит, очевидно, пытался использовать кабель, чтобы очистить ракушки.в точке, где кабель спускался с крутого обрыва. Несчастный кит запутался хвостом в петлях кабеля и утонул. Корабль по ремонту тросов « Янтарная ведьма» смог только с трудом поднять трос, отягощенный трупом мертвого кита. [28]

Проблемы с пропускной способностью [ править ]

Ранние подводные телеграфные кабели для дальней связи демонстрировали серьезные проблемы с электричеством. В отличие от современных кабелей, технология 19 века не позволяла использовать в кабеле встроенные усилители репитера . Большие напряжения использовались, чтобы попытаться преодолеть электрическое сопротивление их огромной длины, но распределенная емкость и индуктивность кабелей объединились, чтобы исказить телеграфные импульсы в линии, уменьшая полосу пропускания кабеля , резко ограничивая скорость передачи данных для работы телеграфа до 10–12 слов в минуту .

Еще в 1816 году Фрэнсис Рональдс заметил, что электрические сигналы задерживаются при прохождении через изолированный провод или сердечник, проложенный под землей, и обозначил причину индукции, используя аналогию с длинной лейденской банкой . [29] [30] Тот же эффект был замечен Латимером Кларком (1853) на сердечниках, погруженных в воду, и особенно на длинном кабеле между Англией и Гаагой. Майкл Фарадей показал, что эффект был вызван емкостью между проводом и окружающей его землей (или водой). Фарадей заметил, что когда провод заряжается от батареи (например, при нажатии на кнопку телеграфа), электрический зарядв проводе индуцирует противоположный заряд в воде по мере ее движения. В 1831 году Фарадей описал этот эффект в том, что сейчас называется законом индукции Фарадея . Поскольку два заряда притягиваются друг к другу, возбуждающий заряд замедляется. Сердечник действует как конденсатор, распределенный по длине кабеля, который в сочетании с сопротивлением и индуктивностью кабеля ограничивает скорость, с которой сигнал проходит через проводник кабеля.

Ранние разработки кабелей не могли правильно проанализировать эти эффекты. Известно, что EOW Whitehouse отклонил проблемы и настаивал на возможности прокладки трансатлантического кабеля. Когда впоследствии он стал электриком в Atlantic Telegraph Company , он стал участником публичного спора с Уильямом Томсоном . Уайтхаус считал, что при достаточном напряжении можно управлять любым кабелем. Томсон считал, что его закон квадратов показывает, что замедление не может быть преодолено более высоким напряжением. Он рекомендовал кабель большего размера. Из-за чрезмерных напряжений, рекомендованных Уайтхаусом, первый трансатлантический кабель Сайруса Вест Филда никогда не работал надежно и в конечном итоге закоротил к океану, когда Уайтхаус увеличил напряжение сверх проектного предела.

Томсон разработал сложный генератор электрического поля, который минимизировал ток за счет резонанса кабеля, и чувствительный световой зеркальный гальванометр для обнаружения слабых телеграфных сигналов. Томсон разбогател на гонорарах за эти и несколько связанных с ними изобретений. Томсон был повышен до лорда Кельвина за его вклад в эту область, главным образом за точную математическую модель кабеля, которая позволила разработать оборудование для точной телеграфии. Воздействие атмосферного электричества и геомагнитного поля на подводные кабели также послужило стимулом для многих ранних полярных экспедиций .

Томсон провел математический анализ распространения электрических сигналов в телеграфных кабелях на основе их емкости и сопротивления, но, поскольку длинные подводные кабели работали с низкой скоростью, он не учел влияние индуктивности. К 1890-м годам Оливер Хевисайд создал современную общую форму уравнений телеграфа , которая включала эффекты индуктивности и имела важное значение для распространения теории линий передачи на более высокие частоты, необходимые для высокоскоростной передачи данных и голоса.

Трансатлантическая телефония [ править ]

Кабели подводной связи пересекают шотландский берег в Скад-Хед-он- Хой , Оркнейские острова .

В то время как прокладка трансатлантического телефонного кабеля серьезно рассматривалась с 1920-х годов, технология, необходимая для экономически осуществимой связи, не была разработана до 1940-х годов. Первая попытка проложить пупинизированный телефонный кабель не удалась в начале 1930-х годов из-за Великой депрессии .

TAT-1 (Transatlantic No. 1) была первой трансатлантической телефонной кабельной системой. Между 1955 и 1956 годами был проложен кабель между заливом Галланах, недалеко от Обана , Шотландия, и Кларенвиллем, Ньюфаундленд и Лабрадор . Он был открыт 25 сентября 1956 года и первоначально имел 36 телефонных каналов.

В 1960-х годах трансокеанские кабели представляли собой коаксиальные кабели, по которым передавались частотно-мультиплексированные сигналы голосового диапазона . Постоянный ток высокого напряжения на повторителях с питанием от внутреннего проводника (двусторонние усилители, размещенные через определенные промежутки вдоль кабеля). Репитеры первого поколения остаются одними из самых надежных ламповых усилителей из когда-либо созданных. [31] Более поздние были преобразованы в транзисторы. Многие из этих кабелей все еще годны для использования, но от них отказались, поскольку их емкость слишком мала, чтобы быть коммерчески жизнеспособными. Некоторые из них использовались в качестве научных инструментов для измерения волн землетрясений и других геомагнитных явлений. [32]

Другое использование [ править ]

В 1942 году компания Siemens Brothers из Нью-Чарльтона , Лондон, совместно с Национальной физической лабораторией Соединенного Королевства адаптировала технологию подводных коммуникационных кабелей для создания первого в мире подводного нефтепровода в рамках операции «Плутон» во время Второй мировой войны . Активные оптоволоконные кабели могут быть полезны при обнаружении сейсмических событий, которые изменяют поляризацию кабеля. [33]

Современная история [ править ]

Оптические телекоммуникационные кабели [ править ]

Карта подводных кабелей 2007 г. [ необходима цитата ]

В 1980-х годах были разработаны оптоволоконные кабели . Первым трансатлантическим телефонным кабелем, в котором использовалось оптическое волокно, был ТАТ-8 , который был введен в эксплуатацию в 1988 году. Волоконно-оптический кабель состоит из нескольких пар волокон. Каждая пара имеет по одному волокну в каждом направлении. ТАТ-8 имел две рабочие пары и одну резервную пару.

В современных волоконно-оптических повторителях используется твердотельный оптический усилитель , обычно волоконный усилитель, легированный эрбием . Каждый повторитель содержит отдельное оборудование для каждого волокна. Они включают преобразование сигнала, измерение ошибок и контроль. Твердотельный лазер отправляет сигнал на следующий отрезок волокна. Твердотельный лазер возбуждает короткое легированное волокно, которое само действует как лазерный усилитель. Когда свет проходит через волокно, он усиливается. Эта система также допускает мультиплексирование с разделением по длине волны , что значительно увеличивает пропускную способность волокна.

Повторители получают питание от постоянного постоянного тока, проходящего по проводнику около центра кабеля, поэтому все повторители в кабеле включены последовательно. На оконечных станциях установлено оборудование подачи энергии. Обычно оба конца генерируют ток, причем один конец обеспечивает положительное напряжение, а другой - отрицательное. Виртуальная земля точка существует примерно на полпути вдоль кабеля при нормальных условиях эксплуатации. Усилители или повторители получают свою мощность от разности потенциалов на них. Напряжение, передаваемое по кабелю, часто составляет от 3000 до 15000 В постоянного тока при токе до 1100 мА, причем ток увеличивается с уменьшением напряжения; ток при 10000 В постоянного тока составляет до 1650 мА. Следовательно, общая мощность, передаваемая по кабелю, часто достигает 16,5 кВт. [34] [35]

Оптическое волокно, используемое в подводных кабелях, выбрано из-за его исключительной ясности, позволяя проложить расстояние более 100 километров (62 миль) между повторителями, чтобы минимизировать количество усилителей и искажения, которые они вызывают. Неповторенные кабели дешевле, чем повторяющиеся, однако их максимальная дальность передачи ограничена, однако максимальная дальность передачи с годами увеличивалась; в 2014 году в эксплуатации находились неповторяющиеся кабели протяженностью до 380 км; однако для этого требуется, чтобы репитеры без питания размещались каждые 100 км. [36]

Схема ретранслятора подводного оптического кабеля

Растущий спрос на эти оптоволоконные кабели опережал возможности таких поставщиков, как AT&T. [ когда? ] Необходимость перенести трафик на спутники приводила к ухудшению качества сигнала. Чтобы решить эту проблему, AT&T пришлось улучшить свои возможности по прокладке кабеля. Он инвестировал 100 миллионов долларов в производство двух специализированных судов для прокладки волоконно-оптического кабеля. К ним относятся лаборатории на кораблях для сращивания кабеля и тестирования его электрических свойств. Такой мониторинг поля важен, потому что стекло оптоволоконного кабеля менее податливо, чем раньше использовавшийся медный кабель. Корабли оснащены подруливающими устройствами.повышающие маневренность. Эта возможность важна, потому что оптоволоконный кабель должен быть проложен прямо от кормы, что было еще одним фактором, с которым не приходилось сталкиваться судам, занимающимся прокладкой медных кабелей. [37]

Первоначально подводные кабели были простыми соединениями точка-точка. С развитием подводных ответвлений (SBU) более одного пункта назначения можно было обслуживать одной кабельной системой. В современных кабельных системах волокна обычно образуют самовосстанавливающееся кольцо для увеличения избыточности, при этом подводные секции проходят разными путями на дне океана . Одна из причин такого развития заключалась в том, что емкость кабельных систем стала настолько большой, что было невозможно полностью резервировать кабельную систему со спутниковой емкостью, поэтому возникла необходимость в обеспечении достаточных возможностей наземного резервного копирования. Не все телекоммуникационные организации хотят воспользоваться этой возможностью, поэтому современные кабельные системы могут иметь двойнуюточки посадки в некоторых странах (где требуется резервная способность) и только отдельные точки посадки в других странах, где резервные возможности либо не требуются, пропускная способность страны достаточно мала, чтобы быть подкрепленной другими средствами, либо имеющая резервное копирование считается слишком дорогим.

Дальнейшим развитием избыточного пути помимо самовосстановления колец является «ячеистая сеть», в которой оборудование быстрой коммутации используется для передачи услуг между сетевыми путями, практически не влияя на протоколы более высокого уровня, если тракт становится неработоспособным. Чем больше путей становится доступными для использования между двумя точками, тем меньше вероятность того, что один или два одновременных отказа помешают сквозному обслуживанию.

По состоянию на 2012 год операторы «успешно продемонстрировали долгосрочную безошибочную передачу со скоростью 100 Гбит / с через Атлантический океан» по маршрутам протяженностью до 6000 км (3700 миль) [38], что означает, что типичный кабель может перемещаться за границу со скоростью десятки терабит в секунду. . В последние несколько лет скорость быстро увеличивалась, и всего тремя годами ранее, в августе 2009 года, на этом маршруте было предложено 40 Гбит / с [39].

Коммутация и морская маршрутизация обычно увеличивают расстояние и, следовательно, задержку в оба конца более чем на 50%. Например, задержка в оба конца (RTD) или задержка самых быстрых трансатлантических соединений составляет менее 60 мс, что близко к теоретическому оптимуму для морского маршрута. Хотя теоретически маршрут большого круга (GCP) между Лондоном и Нью-Йорком составляет всего 5600 км (3500 миль), [40] для этого требуется несколько участков суши ( Ирландия , Ньюфаундленд , остров Принца Эдуарда и перешеек, соединяющий Нью-Брансуик с Новой. Скотия ), а также чрезвычайно приливный залив Фанди и наземный маршрут вдоль Массачусетса.'северный берег от Глостера до Бостона и через довольно застроенные районы до самого Манхэттена . Теоретически использование этого частичного сухопутного маршрута может привести к тому, что время прохождения туда и обратно будет меньше 40 мс (что является минимальным временем скорости света), не считая переключения. На маршрутах с меньшей протяженностью пути время прохождения туда и обратно может в долгосрочной перспективе приблизиться к минимальной скорости света .

Существует два типа подводных волоконно-оптических кабелей: без повторителя и с повторителем. На коротких кабельных трассах предпочтительнее использовать однонаправленные кабели, поскольку они не требуют повторителей, что снижает затраты; однако их максимальное расстояние передачи ограничено.

Типом оптического волокна, используемого в неповторяющихся и очень длинных кабелях, часто является PCSF (сердечник из чистого кремния) из-за его низких потерь 0,172 дБ на километр при передаче лазерного света с длиной волны 1550 нм. Большая хроматическая дисперсия PCSF означает, что для его использования требуется передающее и приемное оборудование, разработанное с учетом этого; это свойство также можно использовать для уменьшения помех при передаче нескольких каналов по одному волокну с использованием мультиплексирования с разделением по длине волны (WDM), что позволяет передавать несколько каналов оптической несущей по одному волокну, каждый из которых несет свою собственную информацию. WDM ограничивается оптической полосой пропускания усилителей, используемых для передачи данных по кабелю, и расстоянием между частотами оптических несущих; однако этот минимальный интервал также ограничен,с минимальным интервалом 50 ГГц (0,4 нм). Использование WDM может уменьшить максимальную длину кабеля, хотя этого можно избежать, проектируя оборудование с учетом этого.

В оптических пост-усилителях, используемых для увеличения мощности сигнала, генерируемого оптическим передатчиком, часто используется эрбиевый волоконный лазер с диодной накачкой. В качестве диода часто используется лазерный диод высокой мощности с длиной волны 980 или 1480 нм. Эта установка обеспечивает доступное усиление до +24 дБм. Использование волокна, легированного эрбием-иттербием, вместо этого позволяет получить усиление +33 дБм, однако, опять же, количество энергии, которое может подаваться в волокно, ограничено. В конфигурациях с одной несущей преобладающим ограничением является фазовая самомодуляция, вызванная эффектом Керра, который ограничивает усиление до +18 дБмВт на волокно. В конфигурациях WDM вместо этого становится преобладающим ограничение из-за перекрестно-фазовой модуляции. Оптические предусилители часто используются для устранения теплового шума приемника.Накачка предварительного усилителя лазером с длиной волны 980 нм приводит к шуму не более 3,5 дБ, при этом шум 5 дБ обычно получается с лазером с длиной волны 1480 нм. Шум должен быть отфильтрован с помощью оптических фильтров.

Рамановское усиление можно использовать для увеличения досягаемости или пропускной способности неповторяемого кабеля путем ввода двух частот в одно волокно; один передает сигналы данных на 1550 нм, а другой накачивает их на 1450 нм. Запуск частоты накачки (лазерного излучения накачки) при мощности всего в один ватт приводит к увеличению дальности действия на 45 км или увеличению мощности в 6 раз.

Другой способ увеличить радиус действия кабеля - использовать репитеры без питания, называемые удаленными оптическими предварительными усилителями (ROPA); они по-прежнему учитывают кабель как неповторяющийся, поскольку ретрансляторам не требуется электроэнергия, но они требуют, чтобы лазерный свет накачки передавался вместе с данными, передаваемыми по кабелю; свет накачки и данные часто передаются по физически отдельным волокнам. ROPA содержит легированное волокно, которое использует свет накачки (часто лазерный свет с длиной волны 1480 нм) для усиления сигналов данных, передаваемых по остальным волокнам. [36]

Важность подводных кабелей [ править ]

В настоящее время 99% трафика данных, пересекающего океаны, передается по подводным кабелям. [41] Надежность подводных кабелей высока, особенно когда (как отмечалось выше) доступны несколько путей в случае обрыва кабеля. Кроме того, общая пропускная способность подводных кабелей составляет терабит в секунду, тогда как спутники обычно предлагают только 1000 мегабит в секунду и имеют более высокую задержку . Однако строительство типичной многотерабитной трансокеанской подводной кабельной системы стоит несколько сотен миллионов долларов. [42]

В результате стоимости и полезности этих кабелей они высоко ценятся не только корпорациями, создающими и эксплуатирующими их для получения прибыли, но и национальными правительствами. Например, правительство Австралии считает свои подводные кабельные системы «жизненно важными для национальной экономики». Соответственно, Австралийское управление по коммуникациям и средствам массовой информации (ACMA) создало защитные зоны, ограничивающие действия, которые могут потенциально повредить кабели, связывающие Австралию с остальным миром. ACMA также регулирует все проекты по прокладке новых подводных кабелей. [43]

Подводные кабели важны как для современных военных, так и для частных предприятий. Военные США , к примеру, использует кабельную сеть подводных лодок для передачи данных из зон конфликтов в командном состав в Соединенных Штатах. Обрыв кабельной сети во время интенсивных операций может иметь прямые последствия для военных на местах. [44]

Инвестиции и финансирование подводных кабелей [ править ]

Карта действующих и ожидаемых подводных кабелей связи, обслуживающих африканский континент.

Почти все волоконно-оптические кабели от ТАТ-8 в 1988–1997 годах были построены консорциумами операторов. Например, TAT-8 насчитывал 35 участников, включая самых крупных международных операторов того времени, таких как AT&T Corporation . [45] Два кабеля, финансируемых из частных источников и не входящие в консорциум, были построены в конце 1990-х годов, что предшествовало массовому спекулятивному стремлению построить кабели, финансируемые из частных источников, которые в период с 1999 по 2001 год достигли пика инвестиций в размере более 22 миллиардов долларов. банкротство и реорганизация кабельных операторов, таких как Global Crossing , 360networks , FLAG , Worldcom и Asia Global Crossing. Tata Communications«Глобальная сеть (TGN) - единственная оптоволоконная сеть, находящаяся в полной собственности на всей планете. [46]

В последние годы наметилась растущая тенденция к увеличению пропускной способности подводных кабелей в Тихом океане (предыдущий уклон всегда заключался в прокладке кабеля связи через Атлантический океан, разделяющий Соединенные Штаты и Европу). Например, в период с 1998 по 2003 год примерно 70% подводного оптоволоконного кабеля было проложено в Тихом океане. Отчасти это является ответом на растущее значение азиатских рынков в мировой экономике. [47]

Хотя большая часть инвестиций в подводные кабели была направлена ​​на развитые рынки, такие как трансатлантические и транстихоокеанские маршруты, в последние годы были усилены усилия по расширению подводной кабельной сети для обслуживания развивающихся стран. Например, в июле 2009 года подводная волоконно-оптическая кабельная линия подключила Восточную Африку к более широкой сети Интернет. Компания SEACOM , которая предоставила этот новый кабель , на 75% принадлежит африканцам. [48] Реализация проекта была отложена на месяц из-за роста пиратства на побережье. [49]

Антарктида [ править ]

Антарктида - единственный континент, до которого еще не дошел подводный телекоммуникационный кабель. Весь телефонный, видео- и почтовый трафик должен передаваться в остальной мир через спутниковые каналы, которые имеют ограниченную доступность и пропускную способность. Базы на самом континенте могут общаться друг с другом по радио , но это только локальная сеть. Чтобы стать жизнеспособной альтернативой, оптоволоконный кабель должен выдерживать температуры -80 ° C (-112 ° F), а также огромные нагрузки от льда, текущего до 10 метров (33 футов) в год. Таким образом, подключение к более крупной магистрали Интернета с высокой пропускной способностью, обеспечиваемой оптоволоконным кабелем, все еще остается невыполнимой экономической и технической проблемой в Антарктике. [50]

Ремонт кабеля [ править ]

Анимационный ролик, показывающий метод ремонта подводных кабелей связи.

Тросы могут быть порваны рыболовными траулерами , якорями, землетрясениями, течениями мутности и даже укусами акул. [51] На основе съемок в Атлантическом океане и Карибском море было обнаружено, что в период с 1959 по 1996 год менее 9% были вызваны природными явлениями. В ответ на эту угрозу для сети связи была разработана практика закапывания кабеля. Средняя частота отказов кабеля составляла 3,7 на 1000 км (620 миль) в год с 1959 по 1979 год. Этот показатель снизился до 0,44 отказов на 1000 км в год после 1985 года из-за массового захоронения кабеля, начиная с 1980 года. [52] Тем не менее, обрывы кабелей ни в коем случае не остались в прошлом: только в Атлантике проводится более 50 ремонтов в год [53].и значительные перерывы в 2006 , 2008 , 2009 и 2011 годах .

Склонность рыболовных траулерных сетей вызывать повреждение кабеля вполне могла быть использована во время холодной войны . Например, в феврале 1959 года в пяти американских трансатлантических кабелях связи произошла серия из 12 разрывов. В ответ на это военное судно США « Рой О. Хейл» задержало и исследовало советский траулер « Новоросийск» . Анализ судового журнала показал, что когда они порвались, он находился в районе каждого кабеля. На палубе « Новоросийска» также были обнаружены обрывы кабеля.. Оказалось, что кабели протащили за судовые сети, а затем перерезали, как только их вытащили на палубу, чтобы освободить сети. Позиция Советского Союза в отношении расследования заключалась в том, что оно было необоснованным, но Соединенные Штаты сослались на Конвенцию о защите подводных телеграфных кабелей 1884 года, которую Россия подписала (до образования Советского Союза), как доказательство нарушения международных норм. протокол. [54]

Береговые станции могут обнаруживать обрыв кабеля с помощью электрических измерений, например, с помощью рефлектометрии с расширенным спектром во временной области (SSTDR), типа рефлектометрии во временной области, которую можно очень быстро использовать в реальных условиях. В настоящее время SSTDR может собрать полный набор данных за 20 мс. [55] По проводам отправляются сигналы с расширенным спектром, а затем наблюдается отраженный сигнал. Затем он сопоставляется с копией отправленного сигнала, и алгоритмы применяются к форме и времени сигналов, чтобы определить местонахождение разрыва.

Корабль для ремонта кабеля будет отправлен к месту, чтобы сбросить маркер рядом с разломом. В зависимости от ситуации используются несколько типов грейферов . Если рассматриваемое морское дно песчаное, используется грейфер с жесткими зубцами, чтобы заглубить поверхность и поймать кабель. Если трос находится на каменистой морской поверхности, грейфер более гибкий, с крючками по всей длине, чтобы он мог адаптироваться к изменяющейся поверхности. [56] В особо глубокой воде трос может быть недостаточно прочным для подъема как отдельного блока, поэтому используется специальный захват, который разрезает трос вскоре после того, как он был зацеплен, и только один отрезок троса поднимается на поверхность на время, после чего вставляется новая секция. [57]Отремонтированный кабель длиннее оригинала, поэтому излишки умышленно проложены в форме буквы «U» на морском дне . Погружной можно использовать для ремонта кабелей , которые лежат в неглубоких водах.

Ряд портов вблизи важных кабельных маршрутов стал домом для специализированных судов по ремонту кабеля. Галифакс , Новая Шотландия, был домом для полдюжины таких судов на протяжении большей части 20-го века, включая долгоживущие суда, такие как CS Cyrus West Field , CS Minia и CS Mackay-Bennett . С двумя последними был заключен контракт на помощь жертвам гибели RMS Titanic . Экипажами этих судов разработано много новой техники и приспособлений для ремонта и улучшения прокладки кабеля, например, « плуг ».

Сбор разведданных [ править ]

Подводные кабели, которые нельзя держать под постоянным наблюдением, с конца 19 века привлекали организации, занимающиеся сбором разведданных. Часто в начале войны страны перерезали кабели других сторон, чтобы перенаправить информационный поток в кабели, за которыми велось наблюдение. Наиболее амбициозные усилия были предприняты во время Первой мировой войны , когда британские и немецкие войска систематически пытались разрушить мировые системы связи друг друга, перерезая свои кабели надводными кораблями или подводными лодками. [58] Во время холодной войны , то ВМС США и Агентство национальной безопасности (NSA) удались поставить проволочные краны на советском подводных линии связи в Operation Ivy Bells.

Воздействие на окружающую среду [ править ]

Основная точка взаимодействия кабелей с морскими обитателями находится в придонной зоне океанов, где проходит большая часть кабеля. Исследования 2003 и 2006 годов показали, что кабели оказывают минимальное воздействие на жизнь в этих средах. При отборе проб отложений вокруг кабелей и на участках, удаленных от кабелей, было обнаружено несколько статистически значимых различий в разнообразии или численности организмов. Основное отличие заключалось в том, что кабели служили точкой крепления для анемонов, которые обычно не могли расти в мягких отложениях. Данные с 1877 по 1955 год показали в общей сложности 16 повреждений кабеля, вызванных запутыванием различных китов.. Такие смертельные запутывания полностью прекратились благодаря усовершенствованным методам размещения современных коаксиальных и оптоволоконных кабелей, которые имеют меньшую тенденцию к самосгибанию при лежании на морском дне. [59]

Последствия для безопасности [ править ]

Подводные кабели проблематичны с точки зрения безопасности, поскольку карты подводных кабелей широко доступны. Чтобы избежать случайного повреждения уязвимых кабелей при транспортировке, необходимы общедоступные карты. Однако наличие легко повреждаемых кабелей означает, что информация также легко доступна для преступных агентов. [60] Прослушивание телефонных разговоров со стороны правительства также создает проблемы кибербезопасности. [61]

Правовые вопросы [ править ]

Подводные кабели страдают от присущих им проблем. Поскольку кабели конструируются и устанавливаются частными консорциумами, с самого начала возникает проблема с ответственностью. Во-первых, распределение ответственности внутри консорциума может быть трудным: поскольку нет четкой ведущей компании, которую можно было бы назначить ответственной, это может привести к путанице, когда кабель нуждается в обслуживании. Во-вторых, трудно решить проблему повреждения кабеля через международно-правовой режим, поскольку он был подписан и предназначен для национальных государств, а не для частных компаний. Таким образом, трудно решить, кто должен нести ответственность за ущерб и ремонт - компания, которая построила кабель, компания, которая заплатила за кабель, правительство стран, в которых заканчивается кабель. [62]

Еще одна правовая проблема - это устаревание правовых систем. Например, Австралия до сих пор применяет штрафы, которые были установлены во время подписания договора о подводном кабеле 1884 года: 2000 австралийских долларов, сейчас они почти незначительны. [63]

Влияние кабельных сетей на современную историю [ править ]

Подводные кабели связи оказали огромное влияние на общество. Помимо обеспечения эффективной межконтинентальной торговли и поддержки фондовых бирж, они оказали большое влияние на международное дипломатическое поведение. До появления подводных коммуникаций у дипломатов было гораздо больше власти, поскольку их непосредственные руководители (правительства стран, которые они представляли) не могли немедленно проверить их. Получение инструкций для дипломатов в чужой стране часто занимало недели или даже месяцы. Дипломатам приходилось проявлять инициативу в переговорах с зарубежными странами, лишь время от времени проверяя их правительство. Эта медленная связь привела к тому, что дипломаты стали заниматься досугом, ожидая приказов.Расширение телеграфных кабелей значительно сократило время отклика, необходимое для инструктажа дипломатов. Со временем это привело к общему снижению престижа и власти отдельных дипломатов в международной политике и сигнализировало о профессионализации дипломатического корпуса, который был вынужден отказаться от своего досуга.[64]

Известные события [ править ]

В 1914 году Германия совершила налет на канатную станцию острова Фаннинг в Тихом океане. [65]

Ньюфаундленда землетрясение 1929 года прервало серию трансатлантических кабелей, вызывая массивный подводный оползень . Последовательность перерывов помогла ученым наметить ход оползня. [66]

В 1986 году [67] во время испытаний прототипа и предсерийных испытаний оптоволоконного кабеля TAT-8 и процедур его укладки, проведенных AT&T в районе Канарских островов , кабель был поврежден укусом акулы. Это показало, что акулы будут нырять на глубину до 1 километра (0,62 мили), что удивило морских биологов, которые до этого считали, что акулы не проявляют активности на таких глубинах. Подводная кабельная связь ТАТ-8 была открыта в 1988 г. [68]

В июле 2005 года часть SEA-ME-WE 3 подводных кабелей расположены 35 км (22 миль) к югу от Карачи , что при условии , Пакистан «s основные внешние связи стали дефекты, нарушая почти все связи Пакистана с остальным миром, и затрагивает около 10 миллионов пользователей Интернета. [69] [70] [71]

26 декабря 2006 года землетрясение в Хенгчуне в 2006 году вывело из строя многочисленные кабели между Тайванем и Филиппинами . [72]

В марте 2007 года пираты украли 11-километровый участок подводного кабеля TVH, который соединял Таиланд , Вьетнам и Гонконг , в результате чего интернет-пользователи Вьетнама стали работать гораздо медленнее. Воры пытались продать 100 тонн кабеля в лом. [73]

Разрушение подводного кабеля 2008 была серия кабельных отключений, два из трех Суэцкого канала кабелей, два нарушения в Персидском заливе , и один в Малайзии. Это вызвало массовые нарушения связи с Индией и Ближним Востоком . [74] [75]

В апреле 2010 года подводный кабель SEA-ME-WE 4 вышел из строя. Сообщается, что подводная кабельная система связи Юго-Восточная Азия - Ближний Восток - Западная Европа 4 (SEA-ME-WE 4), соединяющая Юго-Восточную Азию и Европу, была перерезана в трех местах, недалеко от Палермо, Италия . [76]

2011 Тохоку землетрясения и цунами повредили ряд подводных кабелей , которые делают посадки в Японии, в том числе: [77]

  • APCN-2 , внутриазиатский кабель, образующий кольцо, связывающее Китай, Гонконг, Японию, Республику Корея, Малайзию, Филиппины, Сингапур и Тайвань.
  • Переход через Тихий океан на запад и переход через Тихий океан на север
  • Сегменты сети пересечения Восточной Азии (по данным PacNet )
  • Сегмент кабельной сети Япония – США (по данным Korea Telecom )
  • Подводная кабельная система ПК-1 (сообщает НТТ )

В феврале 2012 года обрыв кабелей EASSy и TEAMS отключил около половины сетей в Кении и Уганде от глобального Интернета. [78]

В марте 2013 года водолазное сообщение SEA-ME-WE-4 из Франции в Сингапур было прервано дайверами возле Египта. [79]

В ноябре 2014 года SEA-ME-WE 3 остановил весь трафик из Перта, Австралия , в Сингапур из-за неизвестной неисправности кабеля. [80]

В августе 2017 года из-за неисправности подводного кабеля IMEWE (Индия-Ближний Восток-Западная Европа) недалеко от Джидды, Саудовская Аравия , Интернет в Пакистане был нарушен. Подводный кабель IMEWE - это подводная волоконно-оптическая кабельная система сверхвысокой пропускной способности, которая соединяет Индию и Европу через Ближний Восток. Кабель длиной 12 091 км имеет девять оконечных станций, которыми управляют ведущие операторы связи из восьми стран. [81]

AAE-1 , протяженностью более 25 000 километров (16 000 миль), соединяет Юго-Восточную Азию с Европой через Египет. Строительство было завершено в 2017 году. [82]

См. Также [ править ]

  • Батометр
  • Кабелеукладчик
  • Точка посадки кабеля
  • Перечень внутренних подводных кабелей связи
  • Список международных подводных кабелей связи
  • Загруженный подводный кабель
  • Подводный силовой кабель
  • Трансатлантический кабель связи

Ссылки [ править ]

  1. ^ "Как подводные кабели производятся, прокладываются, эксплуатируются и ремонтируются" , TechTeleData
  2. «Подводный мир Интернета». Архивировано 23 декабря2010 г. в Wayback Machine - аннотированное изображение, The Guardian .
  3. ^ Антон А. Huurdeman, Всемирная история телекоммуникаций , стр. 136-140, John Wiley & Sons, 2003 ISBN  0471205052 .
  4. ^ [Герои Телеграфа - Глава III. - Сэмюэл Морс] «Архивная копия» . Архивировано 14 апреля 2013 года . Проверено 5 февраля 2008 .CS1 maint: архивная копия как заголовок ( ссылка ) CS1 maint: bot: исходный статус URL неизвестен ( ссылка )
  5. ^ «Хронология - Биография Сэмюэля Морса» . Inventors.about.com. 2009-10-30 . Проверено 25 апреля 2010 .
  6. ^ a b c d e f g h Хей, Кеннет Ричардсон (1968). Кабельные корабли и подводные кабели . Лондон: Адлард Коулз . ISBN 9780229973637.
  7. ^ a b c Guarnieri, M. (2014). «Покорение Атлантики». Журнал IEEE Industrial Electronics Magazine . 8 (1): 53–56 / 67. DOI : 10.1109 / MIE.2014.2299492 . S2CID 41662509 . 
  8. ^ "C Уильям Сименс". Практический журнал . 5 (10): 219. 1875.
  9. ^ Компания упоминается как Подводная телеграфная компания Ла-Манш.
  10. Бретт, Джон Уоткинс (18 марта 1857 г.). «На подводном телеграфе» . Королевский институт Великобритании: Материалы (стенограмма). II, 1854–1858 гг. Архивировано из оригинального 17 мая 2013 года . Проверено 17 мая 2013 года .
  11. ^ Протокол работы института инженеров-строителей . п. 26.
  12. ^ a b Кеннеди, PM (октябрь 1971 г.). «Имперская кабельная связь и стратегия, 1870–1914». Английский исторический обзор . 86 (341): 728–752. DOI : 10,1093 / ЭМК / lxxxvi.cccxli.728 . JSTOR 563928 . 
  13. ^ Родри Джеффрис Джонс, В шпионах мы доверяем: История западной разведки , стр 43, Oxford University Press, 2013 ISBN 0199580979 . 
  14. ^ Джонатан Рид Винклер, Nexus: стратегические коммуникации и американская безопасность в Первой мировой войне , страницы 5–6, 289, Harvard University Press, 2008 ISBN 0674033906 . 
  15. ^ Headrick, DR, и Griset, P. (2001). «Подводные телеграфные кабели: бизнес и политика, 1838–1939». Обзор истории бизнеса , 75 (3), 543–578.
  16. ^ "Телеграф - Калькутта (Калькутта) | Первая страница | Третий отрезок кабеля, но в Индии безопасно" . Telegraphindia.com. 2008-02-03. Архивировано 3 сентября 2010 года . Проверено 25 апреля 2010 .
  17. «Посадка новозеландского кабеля», стр. 3, «Колонист» , 19 февраля 1876 г.
  18. ^ «Pacific Cable (Сан-Франциско, Гавайи, Гуам, Фил) открывается, президент TR отправляет сообщение 4 июля в History» . Brainyhistory.com. 1903-07-04 . Проверено 25 апреля 2010 .
  19. ^ "История Канадско-Австралийских отношений" . Правительство Канады. Архивировано из оригинала на 2014-07-20 . Проверено 28 июля 2014 .
  20. ^ "Коммерческая Тихоокеанская кабельная компания" . atlantic-cable.com . Атлантический кабель. Архивировано 27 сентября 2016 года . Проверено 24 сентября 2016 года .
  21. ^ "Вехи: Транстихоокеанская кабельная система TPC-1, 1964" . ethw.org . История инженерии и технологии WIKI. Архивировано из оригинального 27 сентября 2016 года . Проверено 24 сентября 2016 года .
  22. ^ «Машина для покрытия проводов шелком и хлопком, 1837 год» . Группа Музея науки . Проверено 24 января 2020 года .
  23. ^ a b c Брайт, Чарльз (1898). Подводные телеграфы: их история, конструкция и работа . Лондон: К. Локвуд и сын. С. 125, 157–160, 337–339. ISBN 9781108069489. LCCN  08003683 . Проверено 27 января 2020 года .
  24. Гловер, Билл (7 февраля 2019 г.). "История Атлантического кабеля и подводных коммуникаций - К. С. Хупер / Сильвертаун" . Атлантический кабель . Проверено 27 января 2020 года .
  25. Гловер, Билл (22 декабря 2019 г.). «История компании Atlantic Cable & Undersea Communications - британские компании по производству подводных кабелей» . Атлантический кабель . Проверено 27 января 2020 года .
  26. ^ Эш, Стюарт, "Развитие подводных кабелей", гл. 1 дюйм, Burnett, Douglas R .; Бекман, Роберт; Давенпорт, Тара М., Подводные кабели: Справочник по законодательству и политике , Издательство Мартинус Нийхофф, 2014 ISBN 9789004260320 . 
  27. ^ Блейк, JT; Боггс, CR (1926). «Поглощение воды резиной». Промышленная и инженерная химия . 18 (3): 224–232. DOI : 10.1021 / ie50195a002 .
  28. «Об авариях с подводными кабелями» , Журнал Общества инженеров-телеграфистов , вып. 2, вып. 5. С. 311–313, 1873.
  29. ^ Ronalds, BF (2016). Сэр Фрэнсис Рональдс: отец электрического телеграфа . Лондон: Imperial College Press. ISBN 978-1-78326-917-4.
  30. ^ Ronalds, BF (февраль 2016). "Двухсотлетие электрического телеграфа Фрэнсиса Рональдса" . Физика сегодня . 69 (2): 26–31. DOI : 10.1063 / PT.3.3079 .
  31. ^ "Узнайте о подводных кабелях" . Международный комитет по защите подводных кабелей. Архивировано из оригинала на 2007-12-13 . Проверено 30 декабря 2007 .. С этой страницы: В 1966 году, после десяти лет эксплуатации, 1608 ламп в ретрансляторах не потерпели ни единого отказа. Фактически, после более чем 100 миллионов ламповых часов в целом подводные ретрансляторы AT&T работали исправно.
  32. ^ Батлер, R .; А. Д. Чаве; Ф.К. Дуэннебье; DR Yoerger; Р. Петитт; Д. Харрис; FB Wooding; А. Д. Боуэн; Дж. Бэйли; Дж. Джолли; Э. Хобарт; Я. А. Хильдебранд; А. Х. Додеман. "Обсерватория Гавайи-2 (H2O)" (PDF) . Архивировано (PDF) из оригинала 26 февраля 2008 года.
  33. Чжан, Чжунвэнь (26 февраля 2021 г.). «Зондирование сейсмических и водных волн на трансокеанских кабелях на основе оптической поляризации» . Наука (журнал) . 371 (6532): 931-936. DOI : 10.1126 / science.abe6648 .
  34. ^ https://www.networkworld.com/article/2235353/the-incredible-international-submarine-cable-systems.html
  35. Канеко, Томоюки; Чиба, Йошинори; Куними, Канеаки; Накамура, Томотака (2010). Очень компактное и высоковольтное оборудование для подачи энергии (PFE) для современной подводной кабельной сети (PDF) . SubOptic. Архивировано из оригинального (PDF) 08.08.2020 . Проверено 8 августа 2020 .
  36. ^ a b Tranvouez, Николас; Брэндон, Эрик; Фулленбаум, Марк; Буссле, Филипп; Брыльски, Изабель. Неповторяющиеся системы: современные возможности (PDF) . Архивировано из оригинального (PDF) 08.08.2020 . Проверено 8 августа 2020 .
  37. ^ Bradsher, Keith (15 августа 1990). «Новый оптоволоконный кабель расширит возможности звонков за границу и бросит вызов акулам» . Нью-Йорк Таймс . Проверено 14 января 2020 года .
  38. ^ "Подводные кабельные сети - Hibernia Atlantic испытывает первые 100G трансатлантические испытания" . Submarinenetworks.com. Архивировано из оригинала на 2012-06-22 . Проверено 15 августа 2012 .
  39. ^ «Легко читающая Европа - Оптические сети - Hibernia предлагает кросс-атлантический 40G - Телекоммуникационный телеграфный канал» . Lightreading.com. Архивировано 29 июля 2012 года . Проверено 15 августа 2012 .
  40. ^ "Великий Картограф Круга" . Gcmap.com. Архивировано из оригинала на 2012-07-25 . Проверено 15 августа 2012 .
  41. ^ "Подводный кабельный транспорт 99 процентов международных данных" . Newsweek . Проверено 16 ноября 2016 .
  42. Гардинер, Брайан (25 февраля 2008 г.). «Официальные планы Google по прокладке подводных кабелей» (PDF) . Проводной . Архивировано 28 апреля 2012 года.
  43. ^ [1] [ постоянная мертвая ссылка ] Управление по коммуникациям и СМИ Австралии. (2010, 5 февраля). Подводные телекоммуникационные кабели.
  44. ^ Кларк, Брайан (15 июня 2016 г.). «Подводные кабели и будущее соревнований подводных лодок» . Бюллетень ученых-атомщиков . 72 (4): 234–237. DOI : 10.1080 / 00963402.2016.1195636 .
  45. Данн, Джон (март 1987), «Говоря о фантастическом свете», Ротарианец
  46. ^ Dormon, Боб. «Как работает Интернет: подводное волокно, мозги в банках и коаксиальные кабели» . Ars Technica . Condé Nast . Проверено 28 ноября, 2020 .
  47. ^ Линдстром, A. (1999, 1 января). Укрощение ужасов бездны. Сеть Америки, 103 (1), 5–16.
  48. ^ "Архивная копия" . Архивировано из оригинала на 2010-02-08 . Проверено 25 апреля 2010 .CS1 maint: заархивированная копия как заголовок ( ссылка ) SEACOM (2010)
  49. ^ Маккарти, Дайан (27.07.2009). «Кабель дает большие обещания африканскому Интернету» . CNN . Архивировано 25 ноября 2009 года.
  50. ^ Conti, Хуан Пабло (2009-12-05), "Замороженное из широкополосного" , Engineering & Technology , 4 (21): 34-36, DOI : 10,1049 / et.2009.2106 , ISSN 1750-9645 , архивируются от оригинала на 2012-03-16 
  51. Таннер, Джон С. (1 июня 2001 г.). «2000 метров под водой» . Сеть Америки . bnet.com. Архивировано из оригинала 8 июля 2012 года . Проверено 9 августа 2009 года .
  52. ^ Шапиро, S .; Мюррей, JG; Глисон, РФ; Барнс, С.Р .; Eales, BA; Вудворд, PR (1987). «Угрозы подводным кабелям» (PDF) . Архивировано из оригинального (PDF) 15 октября 2004 года . Проверено 25 апреля 2010 .
  53. Джон Борланд (5 февраля 2008 г.). «Анализ коллапса Интернета: множественные обрывы подводных кабелей показывают хрупкость Интернета в его узких точках» . Обзор технологий .
  54. ^ Посольство Соединенных Штатов Америки. (1959, 24 марта). Нота США Советскому Союзу о разрывах трансатлантических кабелей. Нью-Йорк Таймс, 10.
  55. Смит, Пол, Фурс, Синтия, Сафави, Мехди и Ло, Чет. «Возможность использования датчиков с расширенным спектром для определения местоположения дуг на проводах под напряжением. Датчики с расширенным спектром для определения местоположения дуг на проводах под напряжением». Журнал датчиков IEEE . Декабрь 2005 г. Архивировано 31 декабря 2010 г. в Wayback Machine.
  56. «Когда землетрясение на дне океана», Popular Mechanics , том 53 , № 4, стр. 618–622, апрель 1930 г., ISSN 0032-4558 , стр. 621: различные чертежи и разрезы судового оборудования и операций по ремонту кабелей 
  57. ^ Кларк, AC (1959). Голос через море . Нью-Йорк, штат Нью-Йорк: Harper & Row, Publishers, Inc .. стр. 113
  58. ^ Джонатан Рид Винклер, Nexus: стратегические коммуникации и американская безопасность в Первой мировой войне (Кембридж, Массачусетс: издательство Гарвардского университета , 2008)
  59. ^ Картер, L .; Burnett, D .; Дрю, S .; Marle, G .; Hagadorn, L .; Bartlett-McNeil D .; Ирвин Н. (декабрь 2009 г.). «Подводные кабели и океаны: соединяя мир» (PDF) . п. 31. Архивировано из оригинального (PDF) 07.12.2013 . Проверено 2 августа 2013 .
  60. ^ Martinage R (2015). «Под морем, уязвимость общин». Иностранные дела : 117–126.
  61. ^ Эммотт, Робин. «Бразилия и Европа планируют проложить подводный кабель, чтобы избежать шпионажа США» . Рейтер . Дата обращения 5 июля 2019 .
  62. ^ Давенпорт, Тара (2005). «Подводные кабели, кибербезопасность и международное право: анализ пересечений». Журнал права и технологий Католического университета . 24 (1): 57–109.
  63. ^ Давенпорт, Тара (2015). «Подводные кабели, кибербезопасность и международное право: анализ пересечений». Журнал права и технологий Католического университета : 83–84.
  64. ^ Пол, Никлз (2009). Бернард Финн; Дацин Ян (ред.). Связь под морем: развивающаяся кабельная сеть и ее последствия . MIT Press. С. 209–226. ISBN 978-0-262-01286-7.
  65. ^ Старосельский, Николь. «В нашем мире Wi-Fi Интернет по-прежнему зависит от подводных кабелей» . Разговор . Проверено 28 ноября, 2020 .
  66. ^ Хорошо, IV; Рабинович А.Б .; Борнхолд, Б.Д .; Томсон, RE; Куликов Е.А. (2005). «Цунами, вызванное оползнем в Гранд-Банке 18 ноября 1929 года: предварительный анализ и численное моделирование» (PDF) . Морская геология . Эльзевир . 215 (1–2): 45–47. DOI : 10.1016 / j.margeo.2004.11.007 . Архивировано из оригинального (PDF) 30 июня 2007 года.
  67. ^ Дуглас Р. Бернетт, Роберт Бекман, Тара М. Давенпорт (редакторы), Подводные кабели: Справочник по закону и политике , стр. 389, Издательство Martinus Nijhoff, 2013 ISBN 9004260331 . 
  68. ^ Hecht, Джефф (2009). Бернард Финн; Дацин Ян (ред.). Связь под морем: развивающаяся кабельная сеть и ее последствия . MIT Press. п. 52. ISBN 978-0-262-01286-7.
  69. ^ "Top Story: соглашения о резервной сети прекращены в Пакистане" . Пакистан Таймс . Архивировано из оригинала на 2011-02-13 . Проверено 25 апреля 2010 .
  70. ^ «Нарушение связи в Пакистане - Нарушение - Технология» . Сидней Морнинг Геральд . 2005-06-29. Архивировано 2 сентября 2010 года . Проверено 25 апреля 2010 .
  71. ^ «Пакистан отрезан от мира» . Таймс оф Индия . 2005-06-28 . Проверено 25 апреля 2010 .
  72. ^ «Уроки землетрясений. ML 6.7 (MW 7.1) Тайваньское землетрясение 26 декабря 2006 г.» (PDF) . Научно-исследовательский институт сейсмической инженерии. Архивировано из оригинального (PDF) 21 ноября 2015 года . Проверено 17 января 2017 года .
  73. ^ «Вьетнамский подводный кабель« потерян »и« найден »в LIRNEasia» . Lirneasia.net. Архивировано из оригинала 2010-04-07 . Проверено 25 апреля 2010 .
  74. ^ «Тонкие, как пальцы, подводные кабели связывают мир воедино - Интернет - NBC News» . NBC News. 2008-01-31 . Проверено 25 апреля 2010 .
  75. ^ "AsiaMedia: Бангладеш: подводный кабель оборвался в Египте" . Asiamedia.ucla.edu. 31 января 2008 г. Архивировано из оригинала на 2010-09-01 . Проверено 25 апреля 2010 .
  76. ^ "Сбой SEA-ME-WE-4, чтобы повлиять на Интернет и трафик Telcom" . propakistani.pk . Архивировано из оригинала на 2017-04-05 . Проверено 4 апреля 2017 .
  77. ^ PT (14 марта 2011 г.). «В Японии многие подводные кабели повреждены» . Гигаом. Архивировано 15 марта 2011 года . Проверено 16 марта 2011 .
  78. ^ См. Статью КОМАНДЫ (кабельная система) .
  79. Кирк, Джереми (27 марта 2013 г.). «Подозревается саботаж в Египте, перерезанный подводным кабелем» . ComputerWorld . Архивировано 25 сентября 2013 года . Проверено 25 августа 2013 .
  80. ^ Грабб, Бен (2014-12-02). «Интернет сегодня немного медленный? Вот почему» . Архивировано 11 октября 2016 года . Проверено 11 сентября 2016 .
  81. ^ "Ошибка подводного кабеля IMEWE" . Архивировано 27 апреля 2018 года.
  82. ^ "PTCL вводит в эксплуатацию Пакистан операции подводной кабельной системы AAE-1" .

Дальнейшее чтение [ править ]

  • Чарльз Брайт (1898). Подводные телеграфы: их история, конструкция и работа . Кросби Локворд и сын.
  • Вари Т. Коутс и Бернард Финн (1979). Ретроспективная оценка технологий: трансатлантический кабель 1866 года . Сан-Франциско Пресс.
  • Берн Дибнер (1959). Атлантический кабель . Библиотека Бернди.
  • Бернард Финн; Дацин Ян, ред. (2009). Связь под морем: развивающаяся кабельная сеть и ее последствия . MIT Press.
  • К. Р. Хей (1968). Кабельные корабли и подводные тросы . Подводная кабельная корпорация США.
  • Норман Л. Миддлмисс (2000). Кабельные корабли . Публикации Щита.
  • Николь Старосельски (2015). Подводная сеть (знак, хранение, передача) . Издательство Университета Дьюка. ISBN 978-0822357551.

Внешние ссылки [ править ]

  • Интерактивная карта подводных кабелей
  • Международный комитет по защите кабелей  - включает реестр подводных кабелей по всему миру (хотя и не всегда обновляется так часто, как можно было бы надеяться).
  • Хронология подводных кабелей связи, 1850–2010 гг.
  • Информационная служба Kingfisher - осведомленность о кабелях; Британский сайт информации о подводном кабеле для рыбаков
  • Информация о рыболовном / подводном кабеле Orange
  • Кабельный комитет рыбака штата Орегон

Статьи [ править ]

  • История атлантического кабеля и подводной телеграфии - канатная и подводная кабельная промышленность
  • Mother Earth Mother Board - Wired статья Нила Стивенсона о подводных кабелях
  • Статья о природе - Геомагнитная индукция на трансатлантическом кабеле связи
  • Хант, Брюс Дж. Лорд Кейбл . Europhysics News (2004), Vol. 35 № 6.
  • Винклер, Джонатан Рид. Связь: стратегические коммуникации и безопасность Америки во время Первой мировой войны (Кембридж, Массачусетс: издательство Гарвардского университета, 2008 г.) Отчет о том, как правительство США обнаружило стратегическое значение линий связи, включая подводные кабели, во время Первой мировой войны.
  • Анимационные ролики от Alcatel, показывающие, как подводные кабели устанавливаются и ремонтируются
  • Начинаются работы по ремонту порванной сети
  • Гибкость подводных сетей - журнал Ocean News & Technology, декабрь 2014 г.

Карты [ править ]

  • Карта, показывающая стремительный рост количества подводных кабелей, питающих глобальный Интернет, в период с 1991 по 2016 год (источник: TeleGeography)
  • Интерактивная и регулярно обновляемая карта подводных кабелей от TeleGeography
  • Карты подводных кабелей от TeleGeography , показывающие эволюцию с 2000 года. Карта 2008 года в Guardian ; Карта 2014 года на CNN .
  • Карта и спутниковые снимки мест посадки в США для трансатлантических кабелей
  • Карта и спутниковые снимки мест посадки в США для транстихоокеанских кабелей
  • Информация о позициях и маршрутах подводных кабелей в морях вокруг Великобритании
  • Карта подводного кабеля 2016.