Модуль над кольцом


Мо́дуль над кольцо́м — обобщение понятия векторного пространства с полей на кольца. Одно из основных понятий общей алгебры.

Модули позволяют адаптировать на многие алгебраические структуры стандартные понятия линейной алгебры, такие как базис и линейное отображение, а также предоставляют единообразный язык для работы с такими структурами. Например, модули над кольцом целых чисел — это в точности абелевы группы, а модули над кольцом многочленов над некоторым полем — в точности векторные пространства над с фиксированным линейным оператором.

Понятие модуля лежит в основе коммутативной алгебры, которая играет важную роль в различных областях математики, таких как алгебраическая геометрия, гомологическая алгебра и теория представлений.

В векторном пространстве множество скаляров образует поле, и умножение на скаляр удовлетворяет нескольким аксиомам, таким как дистрибутивность умножения. В модуле же требуется только, чтобы скаляры образовывали кольцо (ассоциативное, с единицей), аксиомы же остаются теми же самыми.

Значительная часть теории модулей состоит из попыток обобщить на них известные свойства векторных пространств, иногда для этого приходится ограничиваться модулями над «хорошо ведущими себя» кольцами, такими как области главных идеалов. Однако в целом модули устроены более сложно, чем векторные пространства. Например, не в каждом модуле можно выбрать базис, и даже те, в которых это возможно, могут иметь несколько базисов с различным числом элементов (в случае некоммутативного кольца).

Пусть  — кольцо (как правило, считающееся коммутативным с единичным элементом ). -модулем называется абелева группа с операцией умножения на элементы кольца :