Эрлангенская программа


Эрлангенская программа — выступление 23-летнего немецкого математика Феликса Клейна в Эрлангенском университете (октябрь 1872 года), в котором он предложил общий алгебраический подход к различным геометрическим теориям и наметил перспективный путь их развития. Доклад был связан с процедурой утверждения Клейна в должности профессора и был опубликован в том же году. Первый русский перевод появился в 1895 году.

В оригинале доклад Клейна назывался «Сравнительное обозрение новейших геометрических исследований» (нем. Vergleichende Betrachtungen über neuere geometrische Forschungen)[1], но в историю науки он вошёл под кратким названием «Эрлангенская программа». Влияние этой программы на дальнейшее развитие геометрии было исключительно велико. На новом уровне повторилось открытие Декарта: алгебраизация геометрии позволила получить глубокие результаты, для старых инструментов крайне затруднительные или вовсе недостижимые.

К середине XIX века геометрия разделилась на множество различных разделов: евклидова, сферическая, гиперболическая, проективная, аффинная, конформная, риманова, многомерная, комплексная и т. д. На рубеже веков, уже после доклада Клейна, к ним добавились ещё псевдоевклидова геометрия и топология.

Клейну принадлежит идея алгебраической классификации различных отраслей геометрии в соответствии с теми классами преобразований, которые для этой геометрии несущественны. Более точно выражаясь, один раздел геометрии отличается от другого тем, что им соответствуют разные группы преобразований пространства, а объектами изучения выступают инварианты таких преобразований[2].

Например, классическая евклидова геометрия изучает свойства фигур и тел, сохраняющиеся при движениях без деформации; ей соответствует группа, содержащая вращения, переносы и их сочетания. Проективная геометрия может изучать конические сечения, но не имеет дела с кругами или углами, потому что круги и углы не сохраняются при проективных преобразованиях. Топология исследует инварианты произвольных непрерывных преобразований (Клейн отметил это ещё до того, как родилась топология). Изучая алгебраические свойства групп преобразований, мы можем открыть новые глубокие свойства соответствующей геометрии, а также проще доказать старые. Подход Клейна унифицировал различные геометрии и их методы, прояснил их различия. Вне данной схемы осталась только риманова геометрия; для её включения в общую систему понадобилось в 1920-х годах значительно обобщить подход Клейна[3].

Пример простого доказательства того, что медианы любого треугольника пересекаются в одной точке. Медиана есть аффинный инвариант; если в равностороннем треугольнике медианы пересекаются в одной точке, то и в любом другом это будет верно, потому что любой треугольник можно аффинным преобразованием преобразовать в равносторонний и обратно.