Из Википедии, бесплатной энциклопедии
  (Перенаправлен с металлов платиновой группы )
Перейти к навигации Перейти к поиску

Эти металлы платиновой группы (сокращенно как PGMs ; альтернативно, платиноиды , platinides , platidises , металлы платиновой группы , металлы платиновой группы , платины семьи или элементов платиновой группы (платиноидов) ) являются шесть благородных , драгоценные металлические элементы сгруппированы вместе в периодической таблице . Все эти элементы являются переходными металлами в d-блоке (группы 8 , 9 и 10 , периоды 5и 6 ). [1]

Шесть металлов платиновой группы - это рутений , родий , палладий , осмий , иридий и платина . Они имеют схожие физические и химические свойства и, как правило, встречаются вместе в одних и тех же месторождениях полезных ископаемых. [2] Однако они могут быть далее подразделены на элементы платиновой группы иридия (IPGE: Os, Ir, Ru) и элементы платиновой группы палладиевой группы (PPGE: Rh, Pt, Pd) на основе их поведения в геологические системы. [3]

Все три элемента в периодической таблице над платиновой группой ( железо , никель и кобальт ) являются ферромагнитными ; они, в том числе элемент лантаноид гадолиний, являются единственными известными переходными металлами с этим свойством. [ необходима цитата ]

История [ править ]

Встречающаяся в природе платина и богатые платиной сплавы были известны американцам доколумбового периода в течение многих лет. [4] Однако, несмотря на то, что этот металл использовался доколумбовыми народами, первое упоминание о платине в Европе появляется в 1557 году в трудах итальянского гуманиста Юлия Цезаря Скалигера (1484–1558) как описание загадочного металла, найденного в Центральноамериканские шахты между Дариеном (Панама) и Мексикой («до сих пор невозможно растопить ни одно из испанских искусств»). [4]

Название платина происходит от испанского слова platina «маленькое серебро» - названия, данного металлу испанскими поселенцами в Колумбии . Они считали платину нежелательной примесью в серебре, которое они добывали. [4] [5]

К 1815 году родий и палладий были открыты Уильямом Хайдом Волластоном , а иридий и осмий - его близким другом и сотрудником Смитсоном Теннантом . [6]

Свойства и использование [ править ]

Копия национального прототипа килограммового стандарта NIST , изготовленная из сплава 90% платины и 10% иридия.

Платиновые металлы обладают многими полезными каталитическими свойствами. Они обладают высокой устойчивостью к износу и потускнению, что делает платину особенно подходящей для ювелирных украшений . Другие отличительные свойства включают стойкость к химическому воздействию, отличные высокотемпературные характеристики, высокую механическую прочность, хорошую пластичность и стабильные электрические свойства. [7] Помимо применения в ювелирных изделиях, платиновые металлы также используются в противораковых препаратах, промышленности, стоматологии, электронике и катализаторах выхлопных газов транспортных средств (VEC). [8] VEC содержат твердую платину (Pt), палладий (Pd) и родий (Rh) и устанавливаются в выхлопной системе транспортных средств для снижения вредных выбросов, таких какокись углерода (CO), превращая их в менее вредные выбросы. [9]

Происшествие [ править ]

Как правило, ультраосновные и основные магматические породы имеют относительно высокое, а граниты низкое содержание следов ЭПГ. Геохимический аномальные следы происходят преимущественно в chromian шпинелей и сульфидах. Основные и ультраосновные магматические породы содержат практически все первичные МПГ мира. Основные слоистые интрузии , включая комплекс Бушвельд , намного превосходят все другие геологические условия залежей платины. [10] [11] [12] [13] К другим экономически значимым месторождениям платиноидов относятся основные интрузии, связанные с паводковыми базальтами , и ультраосновные комплексы типа Аляска, Урал. [11]: 230

Минералы МПГ [ править ]

Типичные руды для МПГ содержат ок. 10 г МПГ на тонну руды, поэтому идентичность конкретного минерала неизвестна. [14]

Платина [ править ]

Платина может встречаться как самородный металл, но также может встречаться в различных минералах и сплавах. [15] [16] Тем не менее, Сперрилит (платина арсенид , ПТС 2 ) руды на сегодняшний день является наиболее значительным источником этого металла. [17] Встречающийся в природе сплав платины и иридия, платиниридий , содержится в минерале куперите ( сульфид платины , PtS). Платина в самородном виде, часто сопровождаемая небольшими количествами других платиновых металлов, находится в аллювиальных и россыпных месторождениях Колумбии , Онтарио., the Ural Mountains, and in certain western American states. Platinum is also produced commercially as a by-product of nickel ore processing. The huge quantities of nickel ore processed makes up for the fact that platinum makes up only two parts per million of the ore. South Africa, with vast platinum ore deposits in the Merensky Reef of the Bushveld complex, is the world's largest producer of platinum, followed by Russia.[18][19] Platinum and palladium are also mined commercially from the Stillwater igneous complex in Montana, USA. Leaders of primary platinum production are South Africa and Russia, followed by Canada, Zimbabwe and USA.[20]

Osmium[edit]

Osmiridium is a naturally occurring alloy of iridium and osmium found in platinum-bearing river sands in the Ural Mountains and in North and South America. Trace amounts of osmium also exist in nickel-bearing ores found in the Sudbury, Ontario region along with other platinum group metals. Even though the quantity of platinum metals found in these ores is small, the large volume of nickel ores processed makes commercial recovery possible.[19][21]

Iridium[edit]

Metallic iridium is found with platinum and other platinum group metals in alluvial deposits. Naturally occurring iridium alloys include osmiridium and iridosmine, both of which are mixtures of iridium and osmium. It is recovered commercially as a by-product from nickel mining and processing.[19]

Ruthenium[edit]

Ruthenium is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario and in pyroxenite deposits in South Africa.[19]

Rhodium[edit]

The industrial extraction of rhodium is complex, because it occurs in ores mixed with other metals such as palladium, silver, platinum, and gold. It is found in platinum ores and obtained free as a white inert metal which is very difficult to fuse. Principal sources of this element are located in South Africa, Zimbabwe, in the river sands of the Ural Mountains, North and South America, and also in the copper-nickel sulfide mining area of the Sudbury Basin region. Although the quantity at Sudbury is very small, the large amount of nickel ore processed makes rhodium recovery cost effective. However, the annual world production in 2003 of this element is only 7 or 8 tons and there are very few rhodium minerals.[22]

Palladium[edit]

Palladium is preferentially hosted in sulphide minerals, primarily in pyrrhotite.[11] Palladium is found as a free metal and alloyed with platinum and gold with platinum group metals in placer deposits of the Ural Mountains of Eurasia, Australia, Ethiopia, South and North America. However it is commercially produced from nickel-copper deposits found in South Africa and Ontario, Canada. The huge volume of nickel-copper ore processed makes this extraction profitable in spite of its low concentration in these ores.[22]

Production[edit]

Process flow diagram for the separation of the platinum group metals.

The production of individual platinum group metals normally starts from residues of the production of other metals with a mixture of several of those metals. Purification typically starts with the anode residues of gold, copper, or nickel production. This results in a very energy intensive extraction process, which leads environmental consequences. With Pt emissions expecting to rise as a result of increased demand for platinum metals as well as expanded mining activity in the Bushveld Igneous Complex, further research is needed to determine the environmental impacts.[23] Classical purification methods exploit differences in chemical reactivity and solubility of several compounds of the metals under extraction.[24] These approaches have yielded to new technologies that utilize solvent extraction.

Separation begins with dissolution of the sample. If aqua regia is used, the chloride complexes are produced. Depending on the details of the process, which are often trade secrets, the individual PGMs are obtained as the following compounds: the poorly soluble (NH4)2IrCl6 and (NH4)2PtCl6, PdCl2(NH3)2, the volatile OsO4 and RuO4, and [RhCl(NH3)5]Cl2.[25]

Production in nuclear reactors[edit]

Significant quantities of the three light platinum group metals—ruthenium, rhodium and palladium—are formed as fission products in nuclear reactors.[26] With escalating prices and increasing global demand, reactor-produced noble metals are emerging as an alternative source. Various reports are available on the possibility of recovering fission noble metals from spent nuclear fuel.[27][28][29]

Environmental problems[edit]

It was previously thought that platinum group metals had very few negative attributes in comparison to their distinctive properties and their ability to successfully reduce harmful emission from automobile exhausts.[30] However, even with all the positives of platinum metal use, the negative effects of their use need to be considered in how it might impact the future. For example, metallic Pt are considered to not be chemically reactive and non-allergenic, so when Pt is emitted from VECs it is in metallic and oxide forms it is considered relatively safe.[31] However, Pt can solubilise in road dust, enter water sources, the ground, and in animals through bioaccumulation.[31] These impacts from platinum groups were previously not considered, however[32] over time the accumulation of platinum group metals in the environment may actually pose more of a risk then previously thought.[32] Future research is needed to fully grasp the threat of platinum metals, especially since as more cars are driven, the more platinum metal emissions there are.

The bioaccumulation of Pt metals in animals can pose a significant health risk to both humans and biodiversity. Species will tend to get more toxic if their food source is contaminated by these hazardous Pt metals emitted from VECs. This can potentiality harm other species, including humans if we eat these hazardous animals, such as fish.[32]

Cisplatin is a platinum based drug used in therapy of human neoplasms. The medical success of cisplatin is conflicted as a result of severe side effects.

Platinum metals extracted during the mining and smelting process can also cause significant environmental impacts. In Zimbabwe, a study showed that platinum group mining caused significant environmental risks, such as pollution in water sources, acidic water drainage, and environmental degradation.[33]

Another hazard of Pt is being exposed to halogenated Pt salts, which can cause allergic reactions in high rates of asthma and dermatitis. This is a hazard that can sometimes be seen in the production of industrial catalysts, causing workers to have reactions.[31] Workers removed immediately from further contact with Pt salts showed no evidence of long-term effects, however continued exposure could lead to health effects.[31]

Platinum drugs use also needs to be reevaluated, as some of the side effects to these drugs include nausea, hearing loss, and nephrotoxicity.[31] Handling of these drugs by professionals, such as nurses, have also resulted in some side effects including chromosome aberrations and hair loss. Therefore, the long term effects of platinum drug use and exposure need to be evaluated and considered to determine if they are safe to use in medical care.

While exposure of relatively low volumes of platinum group metal emissions may not have any long term health effects, there is considerable concern for how the accumulation of Pt metal emissions will impact the environment as well as human health. This is a threat that will need more research to determine the safe levels of risk, as well as ways to mitigate potential hazards from platinum group metals.[34]

See also[edit]

  • Platinum group metals in Africa
  • Merensky Reef

Notes[edit]

  1. ^ a b Renner, H.; Schlamp, G.; Kleinwächter, I.; Drost, E.; Lüschow, H. M.; Tews, P.; Panster, P.; Diehl, M.; et al. (2002). "Platinum group metals and compounds". Ullmann's Encyclopedia of Industrial Chemistry. Wiley. doi:10.1002/14356007.a21_075. ISBN 3527306730.
  2. ^ Harris, D. C.; Cabri L. J. (1991). "Nomenclature of platinum-group-element alloys; review and revision". The Canadian Mineralogist. 29 (2): 231–237.
  3. ^ Rollinson, Hugh (1993). Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical. ISBN 0-582-06701-4.
  4. ^ a b c Weeks, M. E. (1968). Discovery of the Elements (7 ed.). Journal of Chemical Education. pp. 385–407. ISBN 0-8486-8579-2. OCLC 23991202.
  5. ^ Woods, Ian (2004). The Elements: Platinum. Benchmark Books. ISBN 978-0-7614-1550-3.
  6. ^ Platinum Metals Rev., 2003, 47, (4), 175. Bicentenary of Four Platinum Group Metals PART I: RHODIUM AND PALLADIUM – EVENTS SURROUNDING THEIR DISCOVERIES (W. P. Griffith)
  7. ^ Hunt, L. B.; Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses" (PDF). Platinum Metals Review. 13 (4): 126–138. Retrieved 2009-10-02.
  8. ^ Ravindra, Khaiwal; Bencs, László; Van Grieken, René (2004). "Platinum group elements in the environment and their health risk". Science of the Total Environment. 318 (1–3): 1–43. Bibcode:2004ScTEn.318....1R. doi:10.1016/S0048-9697(03)00372-3. hdl:2299/2030. PMID 14654273.
  9. ^ Aruguete, Deborah M.; Wallace, Adam; Blakney, Terry; Kerr, Rose; Gerber, Galen; Ferko, Jacob (2020). "Palladium release from catalytic converter materials induced by road de-icer components chloride and ferrocyanide". Chemosphere. 245: 125578. Bibcode:2020Chmsp.245l5578A. doi:10.1016/j.chemosphere.2019.125578. PMID 31864058.
  10. ^ Buchanan, D. L. (2002). Cabri, L. J. (ed.). "Geology of Platinum Group Elements". CIM Special Volume 54: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-group Elements. Montréal: Canadian Institute of Mining, Metallurgy and Petroleum.
  11. ^ a b c Pohl, Walter L. (2011). Economic Geology : Principles and Practice. Oxford: Wiley-Blackwell. ISBN 978-1-4443-3662-7.
  12. ^ Zereini, Fathi; Wiseman, Clare L.S. (2015). Platinum Metals in the Environment. Berlin: Springer Professional.
  13. ^ Mungall, J. E.; Naldrett, A. J. (2008). "Ore Deposits of the Platinum-Group Elements". Elements. 4 (4): 253–258. doi:10.2113/GSELEMENTS.4.4.253.
  14. ^ Bernardis, F. L.; Grant, R. A.; Sherrington, D. C. (2005). "A review of methods of separation of the platinum-group metals through their chloro-complexes". Reactive and Functional Polymers. 65 (3): 205–217. doi:10.1016/j.reactfunctpolym.2005.05.011.
  15. ^ "Mineral Profile: Platinum". British Geological Survey. September 2009. Retrieved 6 February 2018.
  16. ^ "Search Minerals By Chemistry - Platinum". www.mindat.org. Retrieved 2018-02-08.
  17. ^ Feick, Kathy. "Platinum | Earth Sciences Museum | University of Waterloo". University of Waterloo. Retrieved 6 February 2018.
  18. ^ Xiao, Z.; Laplante, A. R. (2004). "Characterizing and recovering the platinum group minerals—a review". Minerals Engineering. 17 (9–10): 961–979. doi:10.1016/j.mineng.2004.04.001.
  19. ^ a b c d "Platinum–Group Metals" (PDF). U.S. Geological Survey, Mineral Commodity Summaries. January 2007. Retrieved 2008-09-09.
  20. ^ Bardi, Ugo; Caporali, Stefano (2014). "Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?". Minerals. 4 (2): 388–398. doi:10.3390/min4020388. Retrieved 22 December 2020.
  21. ^ Emsley, J. (2003). "Iridium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 201–204. ISBN 0-19-850340-7.
  22. ^ a b Chevalier, Patrick. "Platinum Group Metals" (PDF). Natural Resources Canada. Archived from the original (PDF) on 2011-08-11. Retrieved 2008-10-17.
  23. ^ Sebastien, Rauch (November 2012). "Anthropogenic Platinum Enrichment in the Vicinity of Mines in the Bushveld Igneous Complex, South Africa". Retrieved 14 February 2020.
  24. ^ Hunt, L. B.; Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses" (PDF). Platinum Metals Review. 13 (4): 126–138. Retrieved 2009-10-02.
  25. ^ Bernardis, F. L.; Grant, R. A.; Sherrington, D. C. "A review of methods of separation of the platinum-group metals through their chloro-complexes" Reactive and Functional Polymers 2005, Vol. 65,, p. 205-217. doi:10.1016/j.reactfunctpolym.2005.05.011
  26. ^ R. J. Newman, F. J. Smith (1970). "Platinum Metals from Nuclear Fission – an evaluation of their possible use by the industry" (PDF). Platinum Metals Review. 14 (3): 88.
  27. ^ Zdenek Kolarik, Edouard V. Renard (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel; PART I: general considerations and basic chemistry" (PDF). Platinum Metals Review. 47 (2): 74.
  28. ^ Kolarik, Zdenek; Renard, Edouard V. (2005). "Potential Applications of Fission Platinoids in Industry" (PDF). Platinum Metals Review. 49 (2): 79. doi:10.1595/147106705X35263.
  29. ^ Zdenek Kolarik, Edouard V. Renard (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel; PART II: Separation process" (PDF). Platinum Metals Review. 47 (3): 123.
  30. ^ Gao, Bo; Yu, Yanke; Zhou, Huaidong; Lu, Jin (2012). "Accumulation and distribution characteristics of platinum group elements in roadside dusts in Beijing, China". Environmental Toxicology and Chemistry. 31 (6): 1231–1238. doi:10.1002/etc.1833. PMID 22505271.
  31. ^ a b c d e Khaiwal Ravindra,László Bencs,René Van Grieken (5 January 2004). "Platinum group elements in the environment and their health risk". Science of the Total Environment. 318 (1–3): 1–43. Bibcode:2004ScTEn.318....1R. doi:10.1016/S0048-9697(03)00372-3. hdl:2299/2030. PMID 14654273.CS1 maint: multiple names: authors list (link)
  32. ^ a b c Clare L.S. Wiseman, Fathi Zereini (2012). "Airborne particulate matter, platinum group elements and human health: A review of recent evidence". Science of the Total Environment. 407 (8): 2493–2500. doi:10.1016/j.scitotenv.2008.12.057. PMID 19181366.
  33. ^ Meck, Maideyi; Love, David; Mapani, Benjamin (2006). "Zimbabwean mine dumps and their impacts on river water quality – a reconnaissance study". Physics and Chemistry of the Earth, Parts A/B/C. 31 (15–16): 797–803. Bibcode:2006PCE....31..797M. doi:10.1016/j.pce.2006.08.029.
  34. ^ Hunt, L. B.; Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses" (PDF). Platinum Metals Review. 13 (4): 126–138. Retrieved 2009-10-02.

External links[edit]

  • Platinum Today: The world's leading authority on platinum group metals
  • Platinum Group Spot Prices
  • USGS page on PGM's
  • Platinum Metals Review: A free, quarterly journal of research on the science and technology of the platinum group metals and developments in their application in industry
  • Accenture report on platinum group metals from non-terrestrial sources
  • The PGM Database: Data defining the physical properties and characteristics of the platinum group metals and their alloys