Из Википедии, бесплатной энциклопедии
  (Перенаправлено из адиабатического пламени )
Перейти к навигации Перейти к поиску

При изучении горения существует два типа адиабатической температуры пламени в зависимости от того, как завершается процесс: постоянный объем и постоянное давление.

Объем постоянной температуры адиабатического пламени температура , которая является результатом полного процесса сгорания , который происходит без какой - либо работы , передачи тепла или изменения в кинетической или потенциальной энергии . Его температура выше, чем при постоянном давлении, потому что энергия не используется для изменения объема системы (т. Е. Для создания работы).

Обычное пламя [ править ]

В повседневной жизни, подавляющее большинство пламени встречается те вызвано быстрым окислением из углеводородов в таких материалах, как древесина , воск , жир , пластмассы , пропан и бензин . Температура адиабатического пламени при постоянном давлении таких веществ в воздухе находится в относительно узком диапазоне около 1950 ° C. Это связано с тем, что, с точки зрения стехиометрии , горение органического соединения с n  атомами углерода включает разрыв примерно 2 n  связей C – H, n связей  C – C и 1,5 n  O 2.связей с образованием примерно n молекул  CO 2 и n молекул  H 2 O.

Поскольку большинство процессов сгорания, которые происходят естественным образом, происходят на открытом воздухе, нет ничего, что ограничивало бы газ определенным объемом, как цилиндр в двигателе. В результате эти вещества будут гореть при постоянном давлении, позволяя газу расширяться во время процесса.

Обычные температуры пламени [ править ]

Предполагая начальные атмосферные условия (1  бар и 20 ° C), в следующей таблице [1] указаны температуры пламени для различных видов топлива при постоянном давлении. Указанные здесь температуры относятся к стехиометрической смеси топливо-окислитель (т.е. коэффициент эквивалентности φ  = 1).

Обратите внимание, что это теоретические, а не фактические температуры пламени, создаваемые пламенем, которое не теряет тепла. Ближайшей будет самая горячая часть пламени, где реакция горения наиболее эффективна. Это также предполагает полное сгорание (например, идеально сбалансированное, недымное, обычно голубоватое пламя).

Thermodynamics[edit]

First law of thermodynamics for a closed reacting system

From the first law of thermodynamics for a closed reacting system we have,

where, and are the heat and work transferred from the system to the surroundings during the process respectively, and and are the internal energy of the reactants and products respectively. In the constant volume adiabatic flame temperature case, the volume of the system is held constant hence there is no work occurring,

and there is no heat transfer because the process is defined to be adiabatic: . As a result, the internal energy of the products is equal to the internal energy of the reactants: . Because this is a closed system, the mass of the products and reactants is constant and the first law can be written on a mass basis,

.
Enthalpy versus temperature diagram illustrating closed system calculation

In the constant pressure adiabatic flame temperature case, the pressure of the system is held constant which results in the following equation for the work,

Again there is no heat transfer occurring because the process is defined to be adiabatic: . From the first law, we find that,

Recalling the definition of enthalpy we recover: . Because this is a closed system, the mass of the products and reactants is constant and the first law can be written on a mass basis,

.

We see that the adiabatic flame temperature of the constant pressure process is lower than that of the constant volume process. This is because some of the energy released during combustion goes into changing the volume of the control system.

Adiabatic flame temperatures and pressures as a function of ratio of air to iso-octane. A ratio of 1 corresponds to the stoichiometric ratio
Constant volume flame temperature of a number of fuels, with air

If we make the assumption that combustion goes to completion (i.e. CO
2
and H
2
O
), we can calculate the adiabatic flame temperature by hand either at stoichiometric conditions or lean of stoichiometry (excess air). This is because there are enough variables and molar equations to balance the left and right hand sides,

Rich of stoichiometry there are not enough variables because combustion cannot go to completion with at least CO and H
2
needed for the molar balance (these are the most common incomplete products of combustion),

However, if we include the Water gas shift reaction,

and use the equilibrium constant for this reaction, we will have enough variables to complete the calculation.

Different fuels with different levels of energy and molar constituents will have different adiabatic flame temperatures.

Constant pressure flame temperature of a number of fuels, with air
Nitromethane versus isooctane flame temperature and pressure

We can see by the following figure why nitromethane (CH3NO2) is often used as a power boost for cars. Since each molecule of nitromethane contains two atoms of oxygen, it can burn much hotter because it provides its own oxidant along with fuel. This in turn allows it to build up more pressure during a constant volume process. The higher the pressure, the more force upon the piston creating more work and more power in the engine. It stays relatively hot rich of stoichiometry because it contains its own oxidant. However, continual running of an engine on nitromethane will eventually melt the piston and/or cylinder because of this higher temperature.

Effects of dissociation on adiabatic flame temperature

In real world applications, complete combustion does not typically occur. Chemistry dictates that dissociation and kinetics will change the relative constituents of the products. There are a number of programs available that can calculate the adiabatic flame temperature taking into account dissociation through equilibrium constants (Stanjan, NASA CEA, AFTP). The following figure illustrates that the effects of dissociation tend to lower the adiabatic flame temperature. This result can be explained through Le Chatelier's principle.

See also[edit]

  • Flame speed

References[edit]

  1. ^ See under "Tables" in the external references below.
  2. ^ a b c Flame Temperature Analysis and NOx Emissions for Different Fuels
  3. ^ "Archived copy". Archived from the original on 2017-09-17. Retrieved 2017-09-17.CS1 maint: archived copy as title (link)
  4. ^ a b c d e f g h CRC Handbook of Chemistry and Physics, 96th Edition, p. 15-51
  5. ^ North American Combustion Handbook, Volume 1, 3rd edition, North American Mfg Co., 1986.
  6. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2015-09-24. Retrieved 2013-05-19.CS1 maint: archived copy as title (link)
  7. ^ a b c d e f Power Point Presentation: Flame Temperature, Hsin Chu, Department of Environmental Engineering, National Cheng Kung University, Taiwan
  8. ^ Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor by Jongsup Hong et al., MIT, which cites IPCC Special Report on Carbon Dioxide Capture and Storage (PDF). Intergovernmental Panel on Climate Change. 2005. p. 122.. But the IPCC report actually gives a much less precise statement: "The direct combustion of fuel and oxygen has been practised for many years in the metallurgical and glass industries where burners operate at near stoichiometric conditions with flame temperatures of up to 3500°C." The temperature may depend on pressure, because at lower pressure there will be more dissociation of the combustion products, implying a lower adiabatic temperature.

External links[edit]

General information[edit]

  • Babrauskas, Vytenis (2006-02-25). "Temperatures in flames and fires". Fire Science and Technology Inc. Archived from the original on 12 January 2008. Retrieved 2008-01-27. CS1 maint: discouraged parameter (link)
  • Computation of adiabatic flame temperature
  • Adiabatic flame temperature

Tables[edit]

  • "Adiabatic Flame Temperature". The Engineering Toolbox. Archived from the original on 28 January 2008. Retrieved 2008-01-27. CS1 maint: discouraged parameter (link) adiabatic flame temperature of hydrogen, methane, propane and octane with oxygen or air as oxidizers
  • "Flame Temperatures for some Common Gases". The Engineering Toolbox. Archived from the original on 7 January 2008. Retrieved 2008-01-27. CS1 maint: discouraged parameter (link)
  • Temperature of a blue flame and common materials

Calculators[edit]

  • Online adiabatic flame temperature calculator using Cantera
  • Adiabatic flame temperature program
  • Gaseq, program for performing chemical equilibrium calculations.
  • Flame Temperature Calculator - Constant pressure bipropellant adiabatic combustion
  • Adiabatic Flame Temperature calculator