Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску

Оксианион или oxoanion , является ион с общей формулой А
Икс
Ог -
у
(где A представляет собой химический элемент, а O представляет собой атом кислорода ). Оксианионы образуются подавляющим большинством химических элементов . [1] Формулы простых оксианионов определяются правилом октетов . Соответствующей оксикислотой оксианиона является соединение H
z
А
Икс
О
у
. Структуры конденсированных оксианионов можно рационализировать в терминах многогранных единиц AO n с разделением углов или ребер между многогранниками. Оксианионы (в частности, фосфатные и полифосфатные эфиры) аденозинмонофосфат ( AMP ), аденозиндифосфат ( ADP ) и аденозинтрифосфат (ATP) важны в биологии.

Мономерные оксианионы [ править ]

Формула мономерных оксианионов, АОм -
н
, продиктовано степенью окисления элемента A и его положением в периодической таблице . Максимальное координационное число элементов первого ряда ограничено 4. Однако ни один из элементов первого ряда не имеет мономерного оксианиона с таким координационным числом. Вместо этого карбонат ( CO2-
3
) и нитратов ( NO-
3
) имеют тригональную планарную структуру с π-связью между центральным атомом и атомами кислорода. Этой π-связи способствует сходство размеров центрального атома и кислорода.

Оксианионы элементов второго ряда в групповой степени окисления тетраэдрические . Тетраэдрические звенья SiO 4 обнаружены в оливиновых минералах [Mg, Fe] SiO 4 , но анион не существует отдельно, поскольку атомы кислорода тетраэдрически окружены катионами в твердом состоянии. Фосфат ( PO3-
4
), сульфат ( SO2-
4
) и перхлорат ( ClO-
4
) ионы могут быть найдены как таковые в различных солях. Многие оксианионы элементов в более низкой степени окисления подчиняются правилу октетов, и это можно использовать для рационализации принятых формул. Например, хлор (V) имеет два валентных электрона, поэтому он может вместить три пары электронов из связей с ионами оксида. Заряд иона равен +5 - 3 × 2 = -1, поэтому формула ClO-
3
. Теория VSEPR предсказывает пирамидальную структуру иона с тремя связующими электронными парами и одной неподеленной парой. Аналогичным образом оксианион хлора (III) имеет формулу ClO-
2
, и изгибается двумя неподеленными парами и двумя парами соединений.

В третьей и последующих строках периодической таблицы возможна 6-координация, но изолированные октаэдрические оксианионы неизвестны, потому что они несут слишком высокий электрический заряд. Таким образом, молибден (VI) не образует MoO6-
6
, но образует тетраэдрический молибдат- анион MoO2-
4
. Единицы MoO 6 находятся в конденсированных молибдатах. Полностью протонированные оксианионы с октаэдрической структурой обнаруживаются в таких частицах, как Sn (OH).2-
6
и Sb (OH)-
6
. Кроме того, ортопериодат может протонироваться только частично, а H
3
IO2-
6
|| ⇌ || ЧАС
2
IO3-
6
|| + H + с p K a = 11,60. [2] [3]

Именование [ править ]

Названия мономерных оксианионов следует по следующим правилам.

Если центральный атом не входит в группу VII или VIII
Если центральный атом находится в группе VII или VIII

Реакции конденсации [ править ]

Дихромат-ион; два тетраэдра имеют общий угол

В водном растворе оксианионы с высоким зарядом могут вступать в реакции конденсации, такие как образование дихромат- иона Cr
2
О2-
7
:

2 CrO2-
4
+ 2 H +Cr
2
О2-
7
+ H 2 O

Движущей силой этой реакции является уменьшение плотности электрического заряда на анионе и устранение  иона H + . Степень порядка в растворе уменьшается, высвобождая определенное количество энтропии, что делает свободную энергию Гиббса более отрицательной и способствует прямой реакции. Это пример кислотно-основной реакции, в которой мономерный оксианион действует как основание, а конденсированный оксианион действует как сопряженная кислота . Обратная реакция - это реакция гидролиза , поскольку молекула воды, выступая в качестве базы, раскалывается. Возможна дальнейшая конденсация, особенно с анионами с более высоким зарядом, как это происходит с аденозинфосфатами.

Превращение АТФ в АДФ представляет собой реакцию гидролиза и является важным источником энергии в биологических системах.

Образование большинства силикатных минералов можно рассматривать как результат реакции деконденсации, в которой кремнезем реагирует с основным оксидом, кислотно-основная реакция в смысле Люкс – Флуда .

CaO (основание) + SiO 2 (кислота) → CaSiO 3

Строения и формулы полиоксианионов [ править ]

Цепи метаванадата в метаванадате аммония

Polyoxyanion представляет собой полимерный оксианион , в котором множественные оксианионных мономеры, как правило , рассматривается как МО п многогранников, соединены путем обмена углов или краев. [4] Когда два угла многогранника являются общими, результирующая структура может быть цепочкой или кольцом. Короткие цепи встречаются, например, в полифосфатах . Иносиликаты, такие как пироксены , имеют длинную цепочку тетраэдров SiO 4, каждый из которых имеет два угла. Такая же структура встречается в так называемых метаванадатах , таких как метаванадат аммония , NH 4 VO 3 .

Формула оксианиона SiO2-
3
получается следующим образом: каждый номинальный ион кремния (Si 4+ ) присоединен к двум номинальным ионам оксида (O 2- ) и имеет половину доли в двух других. Таким образом, стехиометрия и заряд определяются как:

Стехиометрии: Si + 2 O + (2 × 1 / 2 ) O = SiO 3
Заряд: +4 , + (2 × -2) + (2 × ( 1 / 2 × -2)) = -2.

Кольцо можно рассматривать как цепочку, в которой соединены два конца. Циклический трифосфат , P
3
О3-
9
это пример.

Когда три угла являются общими, структура расширяется в два измерения. У амфиболов ( примером которых является асбест ) две цепи связаны друг с другом за счет совместного использования третьего угла в разных местах цепи. Это приводит к идеальной формуле Si
4
О6-
11
и линейная цепочечная структура, которая объясняет волокнистую природу этих минералов. Совместное использование всех трех углов может привести к структуре листа, как и в слюды , Si ,
2
О2-
5
, в котором каждый кремний имеет один кислород и половину доли в трех других. Кристаллическую слюду можно расколоть на очень тонкие листы.

Совместное использование всех четырех углов тетраэдров приводит к трехмерной структуре, такой как кварц . Алюмосиликаты - это минералы, в которых некоторое количество кремния заменено алюминием. Однако степень окисления алюминия на единицу меньше, чем у кремния, поэтому замена должна сопровождаться добавлением другого катиона. Число возможных комбинаций такой структуры очень велико, что отчасти является причиной того, что существует так много алюмосиликатов.

Декаванадат-ион, В
10
О4-
28

Октаэдрические звенья MO 6 обычны в оксианионах более крупных переходных металлов. Некоторые соединения, такие как соли цепно-полимерного иона Mo
2
О2-
7
даже содержат как тетраэдрические, так и октаэдрические звенья. [5] [6] Совместное использование ребер является обычным явлением для ионов, содержащих октаэдрические строительные блоки, и октаэдры обычно искажаются, чтобы уменьшить напряжение мостиковых атомов кислорода. В результате образуются трехмерные структуры, называемые полиоксометаллатами . Типичные примеры встречаются в структуре Кеггина от фосфоромолибдата иона. Совместное использование ребер является эффективным средством снижения плотности электрического заряда, что можно увидеть на примере гипотетической реакции конденсации с участием двух октаэдров:

2 мес.п -
6
+ 4 H +Пн
2
О( п −4) -
10
+ 2 Н 2 О

Здесь средний заряд на каждом атоме M уменьшается на 2. Эффективность разделения ребер демонстрируется следующей реакцией, которая происходит при подкислении щелочного водного раствора молибдата.

7 MoO2-
4
+ 8 ч +пн
7
О6-
24
+ 4 Н 2 О

Тетраэдрической молибдат ионов превращается в кластер из 7-края связаны октаэдров [6] [7] дает средний заряд на каждом из молибдена 6 / 7 . Гептамолибдатный кластер настолько стабилен, что кластеры, содержащие от 2 до 6 молибдатных звеньев, не были обнаружены, даже если они должны быть образованы в качестве промежуточных продуктов.

Эвристика для определения кислотности [ править ]

Значение pKa родственных кислот можно определить по количеству двойных связей с кислородом. Таким образом, хлорная кислота является очень сильной кислотой, а хлорноватистая кислота очень слабой. Простое правило обычно работает с точностью до 1 единицы pH.

Кислотно-основные свойства [ править ]

Большинство оксианионов являются слабыми основаниями и могут протонироваться с образованием кислот или кислотных солей. Например, фосфат-ион можно последовательно протонировать с образованием фосфорной кислоты.

PO3-
4
+ H +HPO2-
4
HPO2-
4
+ H +H
2
PO-
4
ЧАС
2
PO-
4
+ H + ⇌ H 3 PO 4
HPO2-
3
(фосфит-ион) структура
Молекула серной кислоты

Степень протонирования в водном растворе будет зависеть от констант диссоциации кислоты и pH . Например, АМФА (аденозинмонофосфат) имеют Ap K на величину 6.21, [8] , так при рНе 7 будет составлять около 10% протонированных. Нейтрализация заряда является важным фактором в этих реакциях протонирования. Напротив, перхлорат и перманганат- ионы одновалентных анионов очень трудно протонировать, поэтому соответствующие кислоты являются сильными кислотами .

Хотя кислоты, такие как фосфорная кислота, записываются как H 3 PO 4 , протоны присоединены к атомам кислорода, образуя гидроксильные группы, поэтому формулу также можно записать как OP (OH) 3, чтобы лучше отражать структуру. Серная кислота может быть записана как O 2 S (OH) 2 ; это молекула, наблюдаемая в газовой фазе.

Фосфита ион, РО3-
3
, является сильным основанием и поэтому всегда несет хотя бы один протон. В этом случае протон присоединяется непосредственно к атому фосфора со структурой HPO2-
3
. При образовании этого иона ион фосфита действует как основание Льюиса и отдает пару электронов кислоте Льюиса, H + .

Диаграмма преобладания хромата

Как упоминалось выше, реакция конденсации также является кислотно-щелочной реакцией. Во многих системах могут происходить реакции как протонирования, так и конденсации. Случай с ионом хромата представляет собой относительно простой пример. На диаграмме преобладания хромата, показанной справа, pCr обозначает отрицательный логарифм концентрации хрома, а pH обозначает отрицательный логарифм  концентрации ионов H + . Есть два независимых состояния равновесия. Константы равновесия определяются следующим образом. [9]

Диаграмма преобладания интерпретируется следующим образом.

  • Хромат-ион CrO2-
    4
    , является преобладающим видом при высоком pH. По мере повышения pH хромат-ион становится все более преобладающим, пока он не станет единственным веществом в растворах с pH> 6,75.
  • При pH <p K 1 ион хромата водорода, HCrO-
    4
    преобладает в разбавленном растворе.
  • Дихромат-ион Cr
    2
    О2-
    7
    , преобладает в более концентрированных растворах, за исключением высоких значений pH.

Виды H 2 CrO 4 и HCr
2
О-
7
не показаны, поскольку они образуются только при очень низком pH.

Диаграммы преобладания могут стать очень сложными, когда могут быть образованы многие полимерные частицы [10], такие как ванадаты , молибдаты и вольфраматы . Еще одна сложность заключается в том, что многие из высших полимеров образуются чрезвычайно медленно, так что равновесие может не достигаться даже за месяцы, что приводит к возможным ошибкам в константах равновесия и диаграмме преобладания.

См. Также [ править ]

  • Оксикатион
  • Фтороанион
  • Карбанион

Ссылки [ править ]

  1. ^ Гринвуд, Норман Н .; Эрншоу, Алан (1997). Химия элементов (2-е изд.). Баттерворт-Хайнеманн . ISBN 978-0-08-037941-8.
  2. ^ Aylett, основанный А. Ф. Холлеманом; продолжение Эгон Виберг; переведена Мэри Иглсон, Уильямом Брюером; переработано Бернхардом Дж. (2001). Неорганическая химия (1-е английское изд., [Отредактировано] Нильсом Вибергом. Ред.). Сан-Диего, Калифорния: Берлин: Academic Press, W. de Gruyter. п. 454. ISBN 0123526515.
  3. ^ Burgot, Жан-Луи (2012-03-30). Ионные равновесия в аналитической химии . Нью-Йорк: Спрингер. п. 358. ISBN 978-1441983824.
  4. Перейти ↑ Mueller, U. (1993). Неорганическая структурная химия . Вайли. ISBN 0-471-93717-7.
  5. ^ Lindqvist, I .; Hassel, O .; Webb, M .; Роттенберг, Макс (1950). "Исследования кристаллической структуры безводных молибдатов натрия и вольфраматов" . Acta Chem. Сканд . 4 : 1066–1074. DOI : 10.3891 / acta.chem.scand.04-1066 .
  6. ^ a b Уэллс, AF (1962). Структурная неорганическая химия (3-е изд.). Оксфорд: Clarendon Press. p446
  7. ^ Линдквист, I. (1950). Arkiv för Kemi . 2 : 325. Отсутствует или пусто |title=( справка )
  8. ^ да Коста, CP; Сигель, Х. (2000). «Свинец (II) -связывающие свойства 5'-монофосфатов аденозина (AMP 2- ), инозина (IMP 2- ) и гуанозина (GMP 2- ) в водном растворе. Доказательства взаимодействий между нуклеиновыми основаниями и свинцом (II)» . Неорг. Chem . 39 (26): 5985–5993. DOI : 10.1021 / ic0007207 . PMID 11151499 . 
  9. ^ Брито, F .; Ascanioa, J .; Mateoa, S .; Hernándeza, C .; Araujoa, L .; Gili, P .; Martín-Zarzab, P .; Domínguez, S .; Медерос, А. (1997). «Равновесие хромата (VI) в кислой среде и ab initio исследования этих видов». Многогранник . 16 (21): 3835–3846. DOI : 10.1016 / S0277-5387 (97) 00128-9 .
  10. Перейти ↑ Pope, MT (1983). Гетерополия и изополия оксометаллатов . Springer. ISBN 0-387-11889-6.