Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску
Отражение через ось (от красного объекта к зеленому) с последующим отражением (от зеленого к синему) через вторую ось, параллельную первой, приводит к общему движению, которое является переносом - на величину, равную удвоенной расстояние между двумя осями.

В математике , А отражение (также пишется отражение ) [1] является отображением из евклидова пространства к себе , что является изометрией с гиперплоскостью в виде набора фиксированных точек ; этот набор называется осью (в измерении 2) или плоскостью (в измерении 3) отражения. Изображение фигуры в отражении - это ее зеркальное отображение в оси или плоскости отражения. Например, зеркальное отображение маленькой латинской буквы p для отражения относительно вертикальной оси будет выглядеть как q. Его изображение при отражении от горизонтальной оси будет иметь вид b . Отражение - это инволюция : при двукратном применении каждая точка возвращается в исходное положение, а каждый геометрический объект возвращается в исходное состояние.

Термин отражение иногда используется для более широкого класса отображений из евклидова пространства в себя, а именно для нетождественных изометрий, которые являются инволюциями. Такие изометрии имеют набор неподвижных точек («зеркало»), которое является аффинным подпространством , но, возможно, меньше, чем гиперплоскость. Например, отражение через точку - это инволютивная изометрия только с одной фиксированной точкой; изображение буквы p под ним будет выглядеть как d . Эта операция также известна как центральная инверсия ( Coxeter 1969 , §7.2) и демонстрирует евклидово пространство как симметричное пространство . В евклидовом векторном пространстве, отражение в точке, находящейся в начале координат, совпадает с отрицанием вектора. Другие примеры включают отражение в линии в трехмерном пространстве. Однако обычно неквалифицированное использование термина «отражение» означает отражение в гиперплоскости .

Фигура, которая не меняется при отражении, называется отражательной симметрией .

Некоторые математики используют слово « переворот » как синоним слова «отражение». [2] [3] [4]

Строительство [ править ]

Точка Q - это отражение точки P через линию AB .

В плоской (или, соответственно, трехмерной) геометрии, чтобы найти отражение от точки, опустите перпендикуляр от точки к линии (плоскости), используемой для отражения, и продлите его на такое же расстояние с другой стороны. Чтобы найти отражение фигуры, отразите каждую точку на рисунке.

Чтобы отразить точку P через линию AB с помощью циркуля и линейки , действуйте следующим образом (см. Рисунок):

  • Шаг 1 (красный): построить окружность с центром в точке P и некоторого фиксированного радиуса г , чтобы создать точки А ' и В' на линии АВ , которая будет равноудалена от P .
  • Шаг 2 (зеленый): построить окружности с центром в точках A и B и радиусом r . P и Q будут точками пересечения этих двух окружностей.

Тогда точка Q является отражением точки P через линию AB .

Свойства [ править ]

Отражение поперек оси, за которым следует отражение от второй оси, не параллельной первой, приводит к общему движению, которое представляет собой вращение вокруг точки пересечения осей на угол, вдвое превышающий угол между осями.

Матрица для отражения ортогональная с определителем -1 и собственных значениями -1, 1, 1, ..., 1. произведением двух таких матриц является специальной ортогональной матрицей , которая представляет собой вращение. Каждое вращение является результатом отражения в четном количестве отражений в гиперплоскостях через начало координат, а каждое неправильное вращение является результатом отражения в нечетном числе. Таким образом, отражения порождают ортогональную группу , и этот результат известен как теорема Картана – Дьедонне .

Точно так же евклидова группа , состоящая из всех изометрий евклидова пространства, порождается отражениями в аффинных гиперплоскостях. В общем, группа, порожденная отражениями в аффинных гиперплоскостях, известна как группа отражений . Эти конечные группы , сгенерированные таким образом , являются примерами групп Кокстера .

Отражение через линию в плоскости [ править ]

Отражение поперек линии, проходящей через начало координат в двух измерениях, можно описать следующей формулой

где обозначает вектор отражения, обозначает любой вектор в линии , через которую осуществляется отражение, а обозначает скалярное произведение из с . Обратите внимание, что формулу выше также можно записать как

говоря , что отражение всей равно 2 раза проекции в на минус вектор . Отражения в линии имеют собственные значения 1 и -1.

Отражение через гиперплоскость в n измерениях [ править ]

Для вектора в евклидовом пространстве формула для отражения в гиперплоскости через начало координат, ортогональное к , дается выражением

где обозначает скалярное произведение из с . Следует отметить , что второй член в приведенном выше уравнении является лишь в два раза вектор проекции из на . Легко проверить, что

  • Ref a ( v ) = - v , если параллельно , и
  • Ref a ( v ) = v , если перпендикулярно a .

Используя геометрическое произведение , формула:

Поскольку эти отражения являются изометриями евклидова пространства, фиксирующими начало координат, они могут быть представлены ортогональными матрицами . Ортогональная матрица, соответствующая указанному выше отражению, представляет собой матрицу , элементы которой равны

где δ ij - символ Кронекера .

Формула для отражения в аффинной гиперплоскости не через начало координат имеет вид

См. Также [ править ]

  • Координатные вращения и отражения
  • Преобразование домохозяина
  • Инверсивная геометрия
  • Точечное отражение
  • Плоскость вращения
  • Отображение отражения
  • Группа отражения
  • Зеркальное отражение

Примечания [ править ]

  1. ^ «Рефлексия» - это архаичное написание. [1]
  2. ^ Чайлдс, Линдси Н. (2009), Конкретное введение в высшую алгебру (3-е изд.), Springer Science & Business Media, стр. 251, ISBN 9780387745275
  3. ^ Gallian, Джозеф (2012), Современная Абстрактная алгебра (8 изд.), Cengage обучения, стр. 32, ISBN 978-1285402734
  4. Перейти ↑ Isaacs, I. Martin (1994), Algebra: A Graduate Course , American Mathematical Society, p. 6, ISBN 9780821847992

Ссылки [ править ]

  • Кокстер, Гарольд Скотт Макдональд (1969), Введение в геометрию (2-е изд.), Нью-Йорк: John Wiley & Sons , ISBN 978-0-471-50458-0, Руководство по ремонту  0123930
  • Попов, В.Л. (2001) [1994], «Отражение» , Энциклопедия математики , EMS Press
  • Вайсштейн, Эрик В. «Отражение» . MathWorld .

Внешние ссылки [ править ]

  • Отражение в линии при разрезании узла
  • Понимание 2D-отражения и понимания 3D-отражения Роджера Гермундссона, The Wolfram Demonstrations Project .