Из Википедии, бесплатной энциклопедии
  (Перенаправлено из эллиптических функций )
Перейти к навигации Перейти к поиску

В математической области комплексного анализа эллиптические функции - это особый вид мероморфных функций, которые удовлетворяют двум условиям периодичности. Их называют эллиптическими функциями, потому что они происходят от эллиптических интегралов . Первоначально эти интегралы возникали при вычислении длины дуги эллипса .

Важные эллиптические функции Якоби Эллиптические функции и Вейерштрасса -функции .

Дальнейшее развитие этой теории привело к гиперэллиптическим функциям и модулярным формам .

Определение [ править ]

Мероморфны функция называется эллиптической функцией, если есть два - линейно независимых комплексных чисел таких , что

и .

Таким образом, эллиптические функции имеют два периода и поэтому также называются двоякопериодическими .

Решетка периодов и фундаментальная область [ править ]

Параллелограмм, где обозначены противоположные стороны

Если - эллиптическая функция с периодами, то также верно, что

для каждой линейной комбинации с .

Абелева группа

называется решеткой периодов .

Параллелограмм , порожденный и

называется фундаментальной областью.

Геометрически комплексная плоскость выложена параллелограммами. Все, что происходит в фундаментальной области, повторяется во всех остальных. По этой причине мы можем рассматривать эллиптическую функцию как функции с факторгруппой как их область определения. Эта фактор-группа может быть представлена ​​в виде параллелограмма с отождествленными противоположными сторонами, который топологически является тором . [1]

Теоремы Лиувилля [ править ]

Следующие три теоремы известны как теоремы Лиувилля (1847 г.).

1-я теорема [ править ]

Голоморфная эллиптическая функция постоянна. [2]

Это исходная форма теоремы Лиувилля, которая может быть выведена из нее. [3] Голоморфная эллиптическая функция ограничена, поскольку она принимает все свои значения на фундаментальной области, которая является компактной. Таким образом, он постоянен по теореме Лиувилля.

2-я теорема [ править ]

Каждая эллиптическая функция имеет конечное число полюсов в и сумма вычетов равна нулю. [4]

Эта теорема означает, что не существует эллиптической функции, не равной нулю, с ровно одним полюсом первого порядка или ровно одним нулем первого порядка в фундаментальной области.

3-я теорема [ править ]

Непостоянная эллиптическая функция принимает каждое значение одинаковое количество раз с учетом кратности. [5]

Функция Вейерштрасса [ править ]

Одной из важнейших эллиптических функций является функция Вейерштрасса . Для заданной решетки периодов он определяется формулой

Она устроена таким образом, что в каждой точке решетки имеет полюс второго порядка. Этот член нужен для того, чтобы ряды сходились.

является четной эллиптической функцией, что означает . [6]

Его производная

является нечетной функцией, т.е. [6]

Один из основных результатов теории эллиптических функций заключается в следующем: любая эллиптическая функция относительно заданной решетки периодов может быть выражена как рациональная функция через и . [7]

В -функции удовлетворяет дифференциальное уравнение

и являются константами, зависящими от . Точнее а , где и находятся так называемые ряды Эйзенштейна . [8]

На алгебраическом языке: поле эллиптических функций изоморфно полю

,

где изоморфизм отображается в и в .

  • Функция Вейерштрасса с решеткой периодов

  • Производная от -функции

Связь с эллиптическими интегралами [ править ]

Связь с эллиптическими интегралами имеет в основном историческую основу. Эллиптические интегралы были изучены Лежандром , чьи работы были приняты Нильсом Хенриком Абелем и Карлом Густавом Якоби .

Абель открыл эллиптические функции, взяв функцию, обратную эллиптической интегральной функции

с . [9]

Дополнительно он определил функции [10]

а также

.

После продолжения на комплексную плоскость они оказались двоякопериодическими и получили название эллиптических функций Абеля .

Эллиптические функции Якоби получаются аналогичным образом как функции, обратные эллиптическим интегралам.

Якоби рассмотрел интегральную функцию

и перевернутый его: . расшифровывается как sinus ampitudinis и является названием новой функции. [11] Затем он ввел функции cosinus ampitudinis и delta ampitudinis , которые определяются следующим образом:

.

Только сделав этот шаг, Якоби смог доказать свою общую формулу преобразования эллиптических интегралов в 1827 году [12].

История [ править ]

Вскоре после развития исчисления бесконечно малых теорию эллиптических функций начали итальянский математик Джулио ди Фаньяно и швейцарский математик Леонард Эйлер . Когда они пытались вычислить длину дуги лемнискаты, они столкнулись с проблемами, связанными с интегралами, содержащими квадратный корень из многочленов степени 3 и 4. [13] Было ясно, что эти так называемые эллиптические интегралы не могут быть решены с использованием элементарных функций. Фаньяно обнаружил алгебраическую связь между эллиптическими интегралами, что он опубликовал в 1750 году. [13] Эйлер немедленно обобщил результаты Фаньяно и сформулировал свою алгебраическую теорему сложения для эллиптических интегралов. [13]

За исключением комментария Ландена [14], его идеи не реализовывались до 1786 года, когда Лежандр опубликовал свою статью Mémoires sur les intégrations par arcs d'ellipse . [15] Впоследствии Лежандр изучал эллиптические интегралы и назвал их эллиптическими функциями . Лежандр ввел тройную классификацию - три типа - что было решающим упрощением довольно сложной теории в то время. Другие важные работы Лежандра: Mémoire sur les transcendantes elliptiques (1792), [16] Exercices de Calcul intégral (1811–1817), [17] Traité des fonctions elliptiques (1825–1832). [18]Математики почти не трогали работы Лежандра до 1826 года.

Впоследствии Нильс Хенрик Абель и Карл Густав Якоби возобновили исследования и быстро обнаружили новые результаты. Сначала они инвертировали эллиптическую интегральную функцию. Следуя предложению Якоби в 1829 году, эти обратные функции теперь называются эллиптическими функциями . Одна из самых важных работ Якоби - Fundamenta nova theoriae functionum ellipticarum, опубликованная в 1829 году. [19] Найденная Эйлер теорема сложения была сформулирована и доказана в ее общей форме Абелем в 1829 году. теории двоякопериодических функций рассматривались как разные теории. Их собрали Briout и Bouquet.в 1856 г. [20] Гаусс открыл многие свойства эллиптических функций 30 лет назад, но так и не опубликовал ничего по этому поводу. [21]

См. Также [ править ]

  • Эллиптический интеграл
  • Модульная группа
  • Рамануджан тета-функция

Ссылки [ править ]

  1. ^ Rolf Busam (2006), Funktionentheorie 1 (на немецком языке ) (.. 4., КОРР унд В Aufl ред.), Berlin: Springer, стр. 259, ISBN 978-3-540-32058-6
  2. ^ Rolf Busam (2006), Funktionentheorie 1 (на немецком языке ) (.. 4., КОРР унд В Aufl ред.), Berlin: Springer, стр. 258, ISBN 978-3-540-32058-6
  3. ^ Джереми Грей (2015), Реальное и сложное: история анализа в 19 веке (на немецком языке), Cham, стр. 118f, ISBN 978-3-319-23715-2
  4. ^ Rolf Busam (2006), Funktionentheorie 1 (на немецком языке ) (.. 4., КОРР унд В Aufl ред.), Berlin: Springer, стр. 260, ISBN 978-3-540-32058-6
  5. ^ Rolf Busam (2006), Funktionentheorie 1 (на немецком языке ) (.. 4., КОРР унд В Aufl ред.), Berlin: Springer, стр. 262, ISBN 978-3-540-32058-6
  6. ^ a b К. Чандрасекхаран (1985), Эллиптические функции (на немецком языке), Берлин: Springer-Verlag, стр. 28, ISBN 0-387-15295-4
  7. ^ Rolf Busam (2006), Funktionentheorie 1 (на немецком языке ) (.. 4., КОРР унд В Aufl ред.), Berlin: Springer, стр. 275, ISBN 978-3-540-32058-6
  8. ^ Rolf Busam (2006), Funktionentheorie 1 (на немецком языке ) (.. 4., КОРР унд В Aufl ред.), Berlin: Springer, стр. 276, ISBN 978-3-540-32058-6
  9. ^ Грей, Джереми (14 октября 2015 г.), Реальное и комплексное: история анализа в XIX веке (на немецком языке), Cham, p. 74, ISBN 978-3-319-23715-2
  10. ^ Грей, Джереми (14 октября 2015 г.), Реальное и комплексное: история анализа в XIX веке (на немецком языке), Cham, p. 75, ISBN 978-3-319-23715-2
  11. ^ Грей, Джереми (14 октября 2015 г.), Реальное и комплексное: история анализа в XIX веке (на немецком языке), Cham, p. 82, ISBN 978-3-319-23715-2
  12. ^ Грей, Джереми (14 октября 2015 г.), Реальное и комплексное: история анализа в XIX веке (на немецком языке), Cham, p. 81, ISBN 978-3-319-23715-2
  13. ^ a b c Грей, Джереми (2015). Реальное и сложное: история анализа в XIX веке . Чам. стр. 23f. ISBN 978-3-319-23715-2. OCLC  932002663 .
  14. ^ Джон Ланден: Исследование общей теоремы для нахождения длины любой дуги любой конической гиперболы с помощью двух эллиптических дуг, с некоторыми другими новыми и полезными теоремами, выведенными из них. В: Философские труды Лондонского королевского общества 65 (1775), Nr. XXVI, S. 283–289, ‹См. Tfd› JSTOR  106197 .
  15. Адриан-Мари Лежандр: Mémoire sur les intégrations par arcs d'ellipse. В: Histoire de l'Académie royale des Sciences Paris (1788), S. 616–643. - Ders .: Второй воспоминание о слиянии арок эллипса и о сравнении дуг. В: Histoire de l'Académie royale des Sciences Paris (1788), S. 644–683.
  16. ^ Лежандр: Мемуар ль transcendantes elliptiques , où l'на донна де méthodes faciles налить Comparer и др évaluer ца trancendantes, квьте comprennent Лез Арк d'эллипс, и др Квай себе rencontrent frèquemment данс ль приложение дю Расчитать Integral. Du Pont & Firmin-Didot, Paris 1792. Englische Übersetzung Воспоминания об эллиптических трансцендентальных формах. В: Томас Лейборн: Новая серия математического репозитория . Группа 2. Глендиннинг, Лондон, 1809 г., часть 3, С. 1–34.
  17. ^ Адриан-Мари Лежандр: Упражнения по вычислению интеграла по различным порядкам трансцендантов и по квадратурам. 3 Bände. ( Группа 1 , Группа 2 , Группа 3). Париж 1811–1817 гг.
  18. ^ Адриан-Мари Лежандр: Traité des fonctions elliptiques et des intégrales eulériennes, avec des tables pour en фасилитатор le Calcul numérique. 3 Bde. ( Группа 1 , Группа 2 , Группа 3/1 , Группа 3/2, Группа 3/3). Юзар-Курсье, Париж 1825–1832 гг.
  19. ^ Карл Густав Джейкоб Якоби: Fundamenta nova theoriae functionum ellipticarum. Кенигсберг 1829 г.
  20. ^ Грей, Джереми (2015). Реальное и сложное: история анализа в XIX веке . Чам. п. 122. ISBN 978-3-319-23715-2. OCLC  932002663 .
  21. ^ Грей, Джереми (2015). Реальное и сложное: история анализа в XIX веке . Чам. п. 96. ISBN 978-3-319-23715-2. OCLC  932002663 .

Литература [ править ]

  • Абрамовиц, Милтон ; Стегун, Ирен Энн , ред. (1983) [июнь 1964]. «Глава 16» . Справочник по математическим функциям с формулами, графиками и математическими таблицами . Прикладная математика. 55 (Девятое переиздание с дополнительными исправлениями, десятое оригинальное издание с исправлениями (декабрь 1972 г.); первое изд.). Вашингтон; Нью-Йорк: Министерство торговли США, Национальное бюро стандартов; Dover Publications. с. 567, 627. ISBN 978-0-486-61272-0. LCCN  64-60036 . Руководство по ремонту  0167642 . ‹См. Tfd› LCCN  65-12253 . См. Также главу 18 . (рассматривает только случай действительных инвариантов).
  • Н. И. Ахиезер , Элементы теории эллиптических функций , (1970) Москва, в переводе на английский как AMS Переводы математических монографий Том 79 (1990) AMS, Род-Айленд ISBN 0-8218-4532-2 
  • Том М. Апостол , Модульные функции и ряды Дирихле в теории чисел , Springer-Verlag, Нью-Йорк, 1976. ISBN 0-387-97127-0 (см. Главу 1.) 
  • Е. Т. Уиттакер и Г. Н. Ватсон . Курс современного анализа , Cambridge University Press, 1952 г.

Внешние ссылки [ править ]

  • "Эллиптическая функция" , Энциклопедия математики , EMS Press , 2001 [1994]
  • MAA, Перевод статьи Абеля об эллиптических функциях.
  • Эллиптические функции и эллиптические интегралы на YouTube , лекция Уильяма А. Швальма (4 часа)
  • Йоханссон, Фредрик (2018). «Численное вычисление эллиптических функций, эллиптических интегралов и модулярных форм». arXiv : 1806.06725 [ cs.NA ].