Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску

Жозеф-Луи Лагранж [a] (урожденный Джузеппе Луиджи Лагранжиа [5] [b] или Джузеппе Людовико Де ла Гранж Турнье ; [6] [c] 25 января 1736 г. - 10 апреля 1813 г.), также известный как Джузеппе Луиджи Лагранж [7] или Lagrangia , [8] был итальянским математиком и астрономом , позже натурализовавшимся французом. Он внес значительный вклад в области анализа , теории чисел , а также классической и небесной механики .

В 1766 году по рекомендации швейцарца Леонарда Эйлера и француза Даламбера Лагранж сменил Эйлера на посту директора математики Прусской академии наук в Берлине, Пруссия , где он пробыл более двадцати лет, выполнил объемные работы и выиграл несколько премии Французской академии наук . Трактат Лагранжа по аналитической механике ( Mécanique analytique , 4. ed., 2 vols. Paris: Gauthier-Villars et fils, 1788–89), написанный в Берлине и впервые опубликованный в 1788 году, предлагает наиболее полное изложение классической механики со времен Ньютона. и легла в основу развития математической физики в девятнадцатом веке.

В 1787 году в возрасте 51 года он переехал из Берлина в Париж и стал членом Французской академии наук. Он оставался во Франции до конца своей жизни. Он сыграл важную роль в децимализации в революционной Франции , стал первым профессором анализа в Политехнической школе после ее открытия в 1794 году, был одним из основателей Bureau des Longitude и стал сенатором в 1799 году.

Научный вклад [ править ]

Лагранж был одним из создателей вариационного исчисления , выведя уравнения Эйлера – Лагранжа для экстремумов функционалов . Он расширил метод, включив в него возможные ограничения, придя к методу множителей Лагранжа . Лагранж изобрел метод решения дифференциальных уравнений, известный как вариация параметров , применил дифференциальное исчисление к теории вероятностей и работал над решениями алгебраических уравнений . Он доказал, что каждое натуральное число представляет собой сумму четырех квадратов . Его трактат Theorie des fonctions analytiquesзаложил некоторые основы теории групп , опередив Галуа . В исчислении Лагранж разработал новый подход к интерполяции и рядам Тейлора . Он изучал задачу трех тел для Земли, Солнца и Луны (1764 г.) и движение спутников Юпитера (1766 г.), а в 1772 г. нашел частные решения этой проблемы, которые дают то, что теперь известно как точки Лагранжа . Лагранж известен прежде всего тем, что преобразовал механику Ньютона в раздел анализа, лагранжевую механику , и представил механические «принципы» как простые результаты вариационного исчисления.

Биография [ править ]

На вид он был среднего роста, слегка сложен, с бледно-голубыми глазами и бесцветной кожей. По характеру он был нервным и робким, он ненавидел споры и, чтобы избежать их, охотно позволял другим брать на себя ответственность за то, что он сам сделал.

Он всегда придумывал предмет своих работ, прежде чем начал их составлять, и обычно писал их сразу, без единого стирания или исправления.

WW Роуз Болл [9]
Портрет Жозефа-Луи Лагранжа (18 век)

Ранние годы [ править ]

Первенец одиннадцати детей как Джузеппе Лодовико Лагранжиа , Лагранж был итальянского и французского происхождения. [7] Его прадед по отцовской линии был французским кавалерийским капитаном, чья семья происходила из французского региона Тур . [7] После службы при Людовике XIV он поступил на службу к Карлу Эммануилу II , герцогу Савойскому , и женился на Конти из благородной римской семьи. [7] Отец Лагранжа, Джузеппе Франческо Лодовико, был доктором права в Туринском университете , а его мать была единственным ребенком богатого доктора из Камбьяно., в сельской местности Турина . [7] [10] Он был воспитан как католик (но позже стал агностиком ). [11]

Его отец, который отвечал за королевский военный сундук и был казначеем Управления общественных работ и укреплений в Турине, должен был поддерживать хорошее социальное положение и богатство, но прежде чем его сын вырос, он потерял большую часть своего имущества в спекуляциях. . Карьера юриста была запланирована для Лагранжа его отцом [7], и, конечно же, Лагранж, похоже, охотно принял это. Он учился в Туринском университете, и его любимым предметом была классическая латынь. Сначала он не проявлял особого энтузиазма к математике, считая греческую геометрию довольно скучной.

Лишь в семнадцатилетнем возрасте он проявил хоть какой-то вкус к математике - его интерес к этой теме был впервые вызван статьей Эдмонда Галлея от 1693 года [12], с которой он столкнулся случайно. В одиночку и без посторонней помощи он погрузился в математические занятия; к концу года непрекращающегося труда он уже был опытным математиком. Карл Эммануэль III назначил Лагранжа работать в качестве «Sostituto del Maestro di Matematica» (доцента математики) в Королевской военной академии теории и практики артиллерии в 1755 году, где он читал курсы математики и механики, чтобы поддержать начальную пьемонтскую армию. принятие баллистических теорий Бенджамина Робинса и Леонарда Эйлера. В этом качестве Лагранж был первым, кто преподает математический анализ в инженерной школе. По словам Алессандро Папачино Д'Антони , военного командира академии и известного теоретика артиллерии, Лагранж, к сожалению, оказался проблемным профессором со своим забывчивым стилем преподавания, абстрактными рассуждениями и нетерпением к применению артиллерии и инженерных сооружений. [13] В этой Академии одним из его учеников был Франсуа Давье . [14]

Вариационное исчисление [ править ]

Лагранж - один из основоположников вариационного исчисления . Начиная с 1754 года, он работал над проблемой таутохроны , открывая метод максимизации и минимизации функционалов аналогично поиску экстремумов функций. Лагранж написал несколько писем Леонарду Эйлеру между 1754 и 1756 годами, описывая свои результаты. Он изложил свой «δ-алгоритм», который привел к уравнениям Эйлера – Лагранжа вариационного исчисления и значительно упростил предыдущий анализ Эйлера. [15] Лагранж также применил свои идеи к проблемам классической механики, обобщив результаты Эйлера и Мопертюи .

Эйлер был очень впечатлен результатами Лагранжа. Было указано , что «с присущей вежливостью он удержан бумагу он ранее написанное, который охватывает некоторые из тех же местах, с тем , что молодой итальянец может иметь время , чтобы завершить свою работу, и претендовать на бесспорное изобретение нового исчисления» ; Однако эта рыцарская точка зрения оспаривается. [16] Лагранж опубликовал свой метод в двух мемуарах Туринского общества в 1762 и 1773 годах.

Miscellanea Taurinensia [ править ]

В 1758 году с помощью своих учеников (в основном с Давье) Лагранж основал общество, которое впоследствии было преобразовано в Туринскую академию наук , и большинство его ранних работ можно найти в пяти томах ее трудов, обычно известная как Miscellanea Taurinensia . Многие из них - сложные документы. Первый том содержит статью по теории распространения звука; в этом он указывает на ошибку, допущенную Ньютоном , получает общее дифференциальное уравнение для движения и интегрирует его для движения по прямой. В этом томе также содержится полное решение проблемы поперечных колебаний струны.; в этой статье он указывает на отсутствие общности в решениях, ранее данных Бруком Тейлором , Д'Аламбером и Эйлером, и приходит к выводу, что форма кривой в любой момент времени t задается уравнением . Статья завершается мастерским обсуждением эхо , битов и сложных звуков. Другие статьи в этом томе посвящены повторяющимся рядам , вероятностям и вариационному исчислению .

Второй том содержит большую статью, отражающую результаты нескольких статей первого тома по теории и обозначениям вариационного исчисления; и он иллюстрирует его использование, выводя принцип наименьшего действия и решая различные проблемы в динамике .

Третий том включает решение нескольких динамических задач с помощью вариационного исчисления; некоторые статьи по интегральному исчислению ; решение проблемы Ферма , упомянутой выше: для целого числа n, не являющегося квадратом , найти такое число x , что x 2 n  + 1 является полным квадратом; и общие дифференциальные уравнения движения трех тел, движущихся под действием их взаимного притяжения.

Следующая работа, которую он написал, была в 1764 году о либрации Луны и объяснении того, почему одно и то же лицо всегда обращено к Земле, проблема, которую он решил с помощью виртуальной работы . Его решение особенно интересно, поскольку оно содержит росток идеи обобщенных уравнений движения, уравнений, которые он впервые формально доказал в 1780 году.

Берлин [ править ]

Уже к 1756 году Эйлер и Мопертюи , видя математический талант Лагранжа, пытались уговорить Лагранжа приехать в Берлин, но он застенчиво отклонил предложение. В 1765 году Даламбер заступился за Лагранжа перед Фридрихом Прусским и письмом попросил его покинуть Турин и занять более престижную должность в Берлине. Он снова отклонил предложение, ответив, что [17] : 361

Мне кажется, что Берлин совсем не подошел бы для меня, пока там господин Эйлер .

В 1766 году, после отъезда Эйлера из Берлина в Санкт-Петербург , сам Фридрих написал Лагранжу, в котором выразил желание «величайшего короля Европы», чтобы «величайший математик Европы» жил при его дворе. Лагранжа наконец убедили. Следующие двадцать лет он провел в Пруссии , где он подготовил длинную серию статей, опубликованных в Берлинских и Туринских сделках, и составил свой монументальный труд « Аналитический анализ Mécanique» . В 1767 году он женился на своей двоюродной сестре Виттории Конти.

Лагранж был любимцем короля, который часто читал ему лекции о преимуществах безупречной регулярности жизни. Урок был принят, и Лагранж изучал свой разум и тело, как если бы они были машинами, и экспериментировал, чтобы найти точный объем работы, который он мог бы выполнить до изнеможения. Каждую ночь он ставил перед собой конкретную задачу на следующий день и, завершив любую ветку предмета, писал краткий анализ, чтобы увидеть, какие моменты демонстраций или предмета можно улучшить. Он тщательно планировал свои работы перед тем, как писать их, обычно без единого стирания или исправления.

Тем не менее, за годы пребывания в Берлине здоровье Лагранжа было довольно плохим, а у его жены Виттории - еще хуже. Она умерла в 1783 году после многих лет болезни, и Лагранж был очень подавлен. В 1786 году умер Фридрих II, и климат Берлина стал тяжелым для Лагранжа. [10]

Париж [ править ]

В 1786 году, после смерти Фридриха, Лагранж получил аналогичные приглашения от государств, включая Испанию и Неаполь , и он принял предложение Людовика XVI переехать в Париж. Во Франции его приняли со всеми отличиями, и для его приема были подготовлены специальные апартаменты в Лувре, и он стал членом Французской академии наук , которая позже стала частью Института Франции (1795). В начале своего пребывания в Париже его охватил приступ меланхолии, и даже печатный экземпляр его « Mécanique», над которым он работал четверть века, лежал в нераспечатанном виде на его столе более двух лет. Любопытство относительно результатов Французской революции сначала вывела его из летаргии, любопытства, которое вскоре переросло в тревогу по мере развития революции.

Примерно в то же время, в 1792 году, необъяснимая печаль его жизни и его робость тронули 24-летнюю Рене-Франсуаз-Аделаид Ле Монье, дочь его друга, астронома Пьера Шарля Ле Монье . Она настояла на том, чтобы выйти за него замуж, и оказалась преданной женой, к которой он очень привязался.

В сентябре 1793 г. началось царство террора . При вмешательстве Антуана Лавуазье , который к тому времени уже был исключен из Академии вместе со многими другими учеными, Лагранж был специально освобожден по имени в декрете от октября 1793 года, который приказал всем иностранцам покинуть Францию. 4 мая 1794 года Лавуазье и 27 других налоговых фермеров были арестованы и приговорены к смертной казни и гильотинированы на следующий день после суда. Лагранж сказал о смерти Лавуазье:

Потребовалось всего мгновение, чтобы эта голова упала, и сотни лет не хватит, чтобы произвести подобное. [10]

Хотя Лагранж готовился к побегу из Франции, пока еще было время, он никогда не подвергался опасности; различные революционные правительства (а позднее и Наполеон ) награждали его почестями и отличиями. Эта удача или безопасность могут в какой-то степени быть результатом его жизненного отношения, которое он выразил много лет назад: « Я считаю, что в целом один из первых принципов каждого мудрого человека - строгое соблюдение законов страны, в которой он живет, даже когда они неразумны ». [10]Ярким свидетельством того уважения, с которым его пользовались, было в 1796 году, когда французскому комиссару в Италии было приказано полностью присутствовать на отце Лагранжа и передать поздравления республики по поводу достижений своего сына, который «сделал это». честь всему человечеству его гением, который произвел на свет Пьемонт особую славу ». Можно добавить, что Наполеон, когда он пришел к власти, горячо поощрял научные исследования во Франции и был их либеральным покровителем. Назначенный сенатором в 1799 году, он был первым подписавшим Сенат-консултом, который в 1802 году присоединил его родину Пьемонт к Франции. [7] В результате он получил французское гражданство. [7]Французы утверждали, что он французский математик, но итальянцы продолжали называть его итальянцем. [10]

Единицы измерения [ править ]

Лагранж участвовал в разработке метрической системы измерения в 1790-х годах. Ему предложили пост президента Комиссии по реформе мер и весов ( la Commission des Poids et Mesures ), когда он готовился к побегу. После смерти Лавуазье в 1794 году, он был в значительной степени Лагранж , которые повлияли на выбор из метровых и килограммовых единиц с десятичного деления, комиссией 1799. [ править ] Лагранж был также одним из членов - учредителей в Бюро долгот в 1795 году.

École Normale [ править ]

В 1795 году Лагранж был назначен на кафедру математики в недавно созданной École Normale , просуществовавшей всего четыре месяца. Его лекции там были довольно элементарными и не содержали ничего особо важного, но они были опубликованы, потому что профессора должны были «дать клятву перед представителями народа и друг перед другом не читать и не повторять по памяти», а лекции приказали снять стенографию, чтобы депутаты увидели, как профессора себя показали.

Политехническая школа [ править ]

В 1794 году Лагранж был назначен профессором Политехнической школы ; и его лекции там, описанные математиками, которым посчастливилось их посещать, были почти идеальными как по форме, так и по содержанию. [ необходимая цитата ] Начиная с простейших элементов, он вел своих слушателей до тех пор, пока, почти незнакомые им самим, они сами не расширяли границы предмета: прежде всего он внушил своим ученикам преимущество всегда использовать общие методы, выраженные в симметричном обозначение.

Но Лагранж, похоже, не был успешным учителем. Фурье , посетивший его лекции в 1795 году, писал:

его голос очень слаб, по крайней мере, в том смысле, что он не нагревается; у него очень заметный итальянский акцент и он произносит s как z [...] Студенты, большинство из которых неспособны оценить его, не приветствуют его, но профессора исправляют это. [18]

Поздние годы [ править ]

Могила Лагранжа в склепе Пантеона

В 1810 году Лагранж начал тщательный пересмотр « Аналитики Mécanique» , но до своей смерти в Париже в 1813 году на улице Фобур Сент-Оноре , 128, ему удалось завершить лишь около двух третей . Наполеон почтил его Великим крестом Империального ордена Реюньона всего за два дня до своей смерти. Он был похоронен в том же году в Пантеоне в Париже. Надпись на его могиле в переводе гласит:

ЖОЗЕФ ЛУИ ЛАГРАНЖ. Сенатор. Граф Империи. Великий офицер Почетного легиона. Большой крест Императорского Ордена Воссоединения . Член Института и Бюро долготы. Родился в Турине 25 января 1736 года. Умер в Париже 10 апреля 1813 года.

Работа в Берлине [ править ]

В течение двадцати лет, проведенных в Берлине, Лагранж был чрезвычайно активен в научной сфере. Он не только подготовил свою аналитическую книгу Mécanique , но и внес от одной до двухсот статей в Туринскую академию, Берлинскую академию и Французскую академию. Некоторые из них действительно являются трактатами, и все без исключения имеют высокий уровень мастерства. За исключением короткого периода, когда он был болен, он выпускал в среднем около одной газеты в месяц. Среди наиболее важных из них отметьте следующие.

Во-первых, его вклад в четвертый и пятый тома « Miscellanea Taurinensia» ( 1766–1773 гг.) ; из которых наиболее важным был случай 1771 года, в котором он обсуждал, как следует объединить многочисленные астрономические наблюдения, чтобы получить наиболее вероятный результат. А позже - его вклад в первые два тома сочинений Туринской академии за 1784–1785 гг .; в первую из которых он внес статью о давлении, оказываемом движущимися жидкостями, а во вторую - статью об интегрировании бесконечными рядами и о типах задач, для которых она подходит.

Большинство статей, отправленных в Париж, касались астрономических вопросов, в том числе его статья о системе Юпитера в 1766 году, его эссе по проблеме трех тел в 1772 году, его работа по светскому уравнению Луны в 1773 году и его работа. трактат о кометных возмущениях 1778 года. Все они были написаны на темы, предложенные Французской академией , и в каждом случае премия была присуждена ему.

Лагранжева механика [ править ]

Между 1772 и 1788 годами Лагранж переформулировал классическую / ньютоновскую механику, чтобы упростить формулы и облегчить вычисления. Эта механика называется лагранжевой .

Алгебра [ править ]

Однако большее количество его статей за это время было передано Прусской академии наук . Некоторые из них занимаются вопросами алгебры .

  • Его обсуждение представлений целых чисел квадратичными формами (1769) и более общими алгебраическими формами (1770).
  • Его трактат по теории исключения , 1770 г.
  • Теорема Лагранжа о том, что порядок подгруппы H группы G должен делить порядок группы G.
  • Его работы 1770 и 1771 годов об общем процессе решения алгебраических уравнений любой степени с помощью резольвент Лагранжа . Этот метод не дает общей формулы для решений уравнения пятой степени и выше, потому что вспомогательное уравнение имеет более высокую степень, чем исходное. Значение этого метода состоит в том, что он показывает уже известные формулы для решения уравнений второй, третьей и четвертой степеней как проявление единого принципа и был основополагающим в теории Галуа . В этих работах также рассматривается полное решение биномиального уравнения (а именно уравнения вида ± ).
  • В 1773 году Лагранж рассмотрел функциональный определитель порядка 3 - частный случай якобиана . Он также доказал , выражение для объема в виде тетраэдра с одной из вершин в начале координат в качестве одной шестой части абсолютного значения этого определителя , образованных координатами три других вершин.

Теория чисел [ править ]

Некоторые из его ранних работ также касаются вопросов теории чисел.

  • Лагранж (1766–1769) был первым европейцем, доказавшим, что уравнение Пелля x 2 - ny 2 = 1 имеет нетривиальное решение в целых числах для любого неквадратного натурального числа n . [19]
  • Он доказал теорему, сформулированную Баше без всяких оснований, о том, что каждое положительное целое число является суммой четырех квадратов , 1770.
  • Он доказал теорему Вильсона о том, что (для любого целого n > 1 ): n является простым числом тогда и только тогда, когда ( n - 1)! +1 делится на n , 1771.
  • Его статьи 1773, 1775 и 1777 годов продемонстрировали несколько результатов, сформулированных Ферма и ранее не доказанных.
  • Его Recherches d'Arithmétique 1775 года разработал общую теорию двоичных квадратичных форм для решения общей проблемы, когда целое число может быть представлено формой ax 2 + на 2 + cxy .
  • Он внес вклад в теорию непрерывных дробей .

Другая математическая работа [ править ]

Есть также множество статей по различным вопросам аналитической геометрии . В двух из них, написанных несколько позже, в 1792 и 1793 годах, он привел уравнения квадрик (или коникоидов) к их каноническим формам .

В период с 1772 по 1785 год он написал длинную серию статей, которые создали науку о уравнениях в частных производных . Большая часть этих результатов была собрана во втором издании интегрального исчисления Эйлера, опубликованном в 1794 году.

Астрономия [ править ]

Наконец, существует множество статей по проблемам астрономии . Из них наиболее важными являются следующие:

  • Попытка решить общую проблему трех тел с последующим открытием двух решений постоянной модели, коллинеарного и равностороннего, 1772. Эти решения позже были замечены для объяснения того, что теперь известно как точки Лагранжа .
  • О притяжении эллипсоидов, 1773 год: он основан на работе Маклорена .
  • О вековом уравнении Луны, 1773 г .; также заметно по самому раннему внедрению идеи потенциала. Потенциал тела в любой точке - это сумма массы каждого элемента тела, деленная на расстояние до точки. Лагранж показал, что, если известен потенциал тела во внешней точке, притяжение в любом направлении может быть обнаружено сразу. Теория потенциала была развита в документе, отправленном в Берлин в 1777 году.
  • О движении узлов орбиты планеты , 1774 год.
  • Об устойчивости планетных орбит, 1776 год.
  • Две работы, в которых полностью разработан метод определения орбиты кометы по трем наблюдениям, 1778 и 1783 гг .: это действительно не оказалось практически доступным, но его система вычисления возмущений с помощью механических квадратур легла в основу большинство последующих исследований по этому вопросу.
  • Его определение вековых и периодических изменений элементов планет, 1781–1784 гг .: установленные для них верхние пределы близко совпадают с теми, которые были получены позже Леверье , и Лагранж дошел до тех пор, пока имелись знания о массах планет. планеты разрешены.
  • Три статьи о методе интерполяции, 1783, 1792 и 1793: часть конечных разностей, относящаяся к ним, сейчас находится на той же стадии, что и Лагранж.

Фундаментальный трактат [ править ]

Помимо этих различных работ, он написал свой фундаментальный трактат « Аналитический анализ» .

В этой опере он устанавливает закон виртуальной работы, и из этого одного фундаментального принципа с помощью вариационного исчисления выводит всю механику как твердых тел, так и жидкостей.

Цель книги - показать, что предмет неявно включен в единый принцип, и дать общие формулы, из которых можно получить любой конкретный результат. Метод обобщенных координат, с помощью которого он получил этот результат, является, пожалуй, самым блестящим результатом его анализа. Вместо того, чтобы следить за движением каждой отдельной части материальной системы, как это делали Даламбер и Эйлер, он показал, что, если мы определим ее конфигурацию с помощью достаточного числа переменных x , называемых обобщенными координатами, число которых совпадает с числом степеней свободы, которыми обладает система, то кинетическая и потенциальная энергии системы могут быть выражены через эти переменные, а дифференциальные уравнения движения, следовательно, выведены простым дифференцированием. Например, в динамике жесткой системы он заменяет рассмотрение частной задачи общим уравнением, которое теперь обычно записывается в виде

где T представляет собой кинетическую энергию, а V представляет собой потенциальную энергию системы. Затем он представил то, что мы теперь знаем как метод множителей Лагранжа - хотя этот метод опубликован не впервые - как средство решения этого уравнения. [20] Среди других незначительных теорем, приведенных здесь, может быть достаточно упомянуть утверждение о том, что кинетическая энергия, передаваемая данными импульсами материальной системе при данных ограничениях, является максимумом, и принцип наименьшего действия . Весь анализ настолько изящен, что сэр Уильям Роуэн Гамильтон сказал, что произведение можно описать только как научное стихотворение. Лагранж заметил, что механика на самом деле была ветвьючистая математика, аналогичная геометрии четырех измерений, а именно времени и трех координат точки в пространстве; Говорят, он гордился тем, что от начала до конца работы не было ни одной диаграммы. Поначалу не нашлось печатника, который издал бы книгу; но Лежандр наконец убедил парижскую фирму взяться за дело, и он был выпущен под руководством Лапласа, Кузена, Лежандра (редактора) и Кондорсе в 1788 году [10].

Работа во Франции [ править ]

Дифференциальное исчисление и вариационное исчисление [ править ]

Лекции Лагранжа по дифференциальному исчислению в Политехнической школе легли в основу его трактата Théorie des fonctions analytiques , опубликованного в 1797 году. Эта работа является продолжением идеи, содержащейся в статье, которую он отправил в берлинские газеты в 1772 году, и ее цель состоит в том, чтобы заменить дифференциальное исчисление группой теорем, основанных на развитии алгебраических функций в ряды, опираясь, в частности, на принцип общности алгебры .

В чем-то похожий метод ранее использовал Джон Ланден в « Остаточном анализе» , опубликованном в Лондоне в 1758 году. Лагранж считал, что таким образом он сможет избавиться от тех трудностей, связанных с использованием бесконечно больших и бесконечно малых величин, против которых возражали философы. в обычном лечении дифференциального исчисления. Книга разделена на три части: первая из них посвящена общей теории функций и дает алгебраическое доказательство теоремы Тейлора , справедливость которой, однако, остается под вопросом; второй касается приложений к геометрии; и третий с приложениями к механике.

Другим трактатом в том же духе был его Leçons sur le Calcul des fonctions , выпущенный в 1804 г., а второе издание - в 1806. Именно в этой книге Лагранж сформулировал свой знаменитый метод множителей Лагранжа в контексте проблем вариационного исчисления с интегральные ограничения. Эти работы, посвященные дифференциальному исчислению и вариационному исчислению, можно рассматривать как отправную точку для исследований Коши , Якоби и Вейерштрасса .

Бесконечно малые [ править ]

В более поздний период Лагранж полностью воспринял использование бесконечно малых величин вместо того, чтобы основать дифференциальное исчисление на изучении алгебраических форм; и в предисловии ко второму изданию Mécanique Analytique , которое было выпущено в 1811 году, он оправдывает использование бесконечно малых величин и в заключение говорит, что:

Когда мы уловили сущность метода бесконечно малых и проверили точность его результатов либо геометрическим методом простых и конечных отношений, либо аналитическим методом производных функций, мы можем использовать бесконечно малые величины в качестве надежных и ценных средства сокращения и упрощения наших доказательств.

Теория чисел [ править ]

Его « Резолюция числовых уравнений» , опубликованная в 1798 году, также была результатом его лекций в Политехнической школе. Там он дает метод приближения к действительным корням уравнения с помощью цепных дробей и формулирует несколько других теорем. В примечании в конце он показывает, как маленькая теорема Ферма , т. Е.

где p - простое число, а a - простое число с p , может применяться для получения полного алгебраического решения любого биномиального уравнения. Здесь он также объясняет, как можно использовать уравнение, корни которого являются квадратами разностей корней исходного уравнения, чтобы дать значительную информацию о положении и природе этих корней.

Небесная механика [ править ]

Теория движения планет стала предметом некоторых из самых замечательных берлинских работ Лагранжа. В 1806 году эта тема была вновь открыта Пуассоном , который в статье, прочитанной во Французской академии, показал, что формулы Лагранжа приводят к определенным ограничениям стабильности орбит. Присутствовавший при этом Лагранж обсуждал эту тему заново и в письме, направленном в Академию в 1808 году, объяснил, как с помощью изменения произвольных констант можно определить периодические и вековые неравенства любой системы взаимно взаимодействующих тел.

Призы и отличия [ править ]

Эйлер предложил Лагранжа избрать в Берлинскую академию, и он был избран 2 сентября 1756 года. Он был избран членом Королевского общества Эдинбурга в 1790 году, членом Королевского общества и иностранным членом Шведской королевской академии наук в 1806. В 1808 году Наполеон сделал Лагранжа великим офицером Почетного легиона и графом Империи . В 1813 году, за неделю до своей смерти в Париже, он был награжден Гран-Круа Имперского ордена Реюньона и был похоронен в Пантеоне , мавзолее, посвященном самым уважаемым французам.

Лагранж был удостоен премии 1764 года Французской академии наук за свои мемуары о либрации Луны. В 1766 г. Академия предложила задачу о движении спутников Юпитера , и премия снова была присуждена Лагранжу. Он также разделил или получил призы 1772, 1774 и 1778 годов.

Лагранж - один из 72 выдающихся французских ученых , которых увековечили на мемориальных досках на первой ступени Эйфелевой башни, когда она впервые открылась. Его именем названа улица Лагранжа в 5-м округе Парижа. В Турине улица, на которой до сих пор стоит его дом, носит имя Лагранжа . Лунный кратер Лагранжа и астероид 1006 Lagrangea также носит его имя.

См. Также [ править ]

  • Список вещей, названных в честь Жозефа-Луи Лагранжа
  • История счетчика
  • Маятник секунд

Примечания [ править ]

  1. ^ Великобритания : / л æ ɡ г ɒ ʒ / , [1] Великобритания : / л ə ɡ г eɪ н dʒ , л ə ɡ г ɑ н dʒ , л ə ɡ г ɒ ʒ / , [2] [ 3] [4] Французский:  [ʒɔzɛf lwi laɡʁɑ̃ʒ] .
  2. ^ Итал  [dʒuzɛppe luiːdʒi laɡrandʒa] .
  3. ^ Итал  [dʒuzɛppe Людовико де ла ɡrandʒe turnje] .

Ссылки [ править ]

Цитаты [ править ]

  1. ^ «Лагранж, Жозеф Луи» . Lexico UK Dictionary . Издательство Оксфордского университета . Дата обращения 6 августа 2019 .
  2. ^ "Лагранж" . Полный словарь Random House Webster .
  3. ^ "Лагранж" . Словарь английского языка американского наследия (5-е изд.). Бостон: Houghton Mifflin Harcourt . Дата обращения 6 августа 2019 .
  4. ^ "Лагранж" . Словарь Мерриама-Вебстера . Дата обращения 6 августа 2019 .
  5. Жозеф-Луи Лагранж, граф Империи , Британская энциклопедия
  6. ^ Анджело Дженокки. «Луиджи Лагранж» . Il primo secolo della R. Accademia delle Scienze di Torino (на итальянском языке). Accademia delle Scienze di Torino. С. 86–95 . Проверено 2 января 2014 года .
  7. ^ a b c d e f g h Луиджи Пепе. "Джузеппе Луиджи Лагранж" . Dizionario Biografico degli Italiani (на итальянском языке). Enciclopedia Italiana . Проверено 8 июля 2012 года .
  8. ^ [1] Энциклопедия космоса и астрономии.
  9. ^ WW Rouse Ball , 1908, Джозеф Луи Лагранж (1736–1813) , « Краткое изложение истории математики» , 4-е изд., Стр. 401–412. Полная статья онлайн, стр. 338 и 333: [2]
  10. ^ a b c d e f Лагранж Архивировано 25 марта 2007 г. в Wayback Machine Университета Сент-Эндрю.
  11. ^ Моррис Клайн (1986). Математика и поиск знаний . Издательство Оксфордского университета. п. 214. ISBN 978-0-19-504230-6. Лагранж и Лаплас, хотя и были католиками, были агностиками.
  12. Перейти ↑ Halley, E. (1693). «IV. Образец превосходства современной АЛГЕБРЫ в решении проблемы универсального нахождения фокусов оптических стекол» . Философские труды Лондонского королевского общества . 17 (205): 960–969.
  13. ^ Стил, Бретт (2005). «13». В Бретте Стиле; Тамера Дорланд (ред.). Наследники Архимеда: наука и искусство войны в эпоху Просвещения . Кембридж: MIT Press. стр. 368, 375. ISBN 0-262-19516-X.
  14. ^ де Андраде Мартинс, Роберто (2008). "A busca da Ciência a priori no final do Seculo XVIII ea origem da Análise Dimension". В Роберто де Андраде Мартинс; Лилиан Аль-Чуэйр Перейра Мартинс; Сибель Селестино Силва; Джулиана Мескита Идальго Феррейра (ред.). Filosofia E Historia Da Ciência No Cone Sul. 3 Encontro (на португальском языке). AFHIC. п. 406. ISBN. 978-1-4357-1633-9.
  15. ^ Хотя некоторые авторы говорят об общем методе решения « изопериметрических задач», значение этого выражения восемнадцатого века сводится к «задачам вариационного исчисления», оставляя прилагательное «относительный» для задач с ограничениями изопериметрического типа. Знаменитый метод множителей Лагранжа , который применяется к оптимизации функций нескольких переменных с учетом ограничений, появился гораздо позже. См. Fraser, Craig (1992). «Изопериметрические задачи в вариационном исчислении Эйлера и Лагранжа» . Historia Mathematica . 19 : 4–23. DOI : 10.1016 / 0315-0860 (92) 90052-D .
  16. ^ Galletto Д. Генезис MECANIQUE Аналитического , La Mécanique Аналитического де Лагранждр сыновья Наследство, II (Турин, 1989). Atti Accad. Sci. Torino Cl. Sci. Fis. Мат. Natur. 126 (1992), доп. 2, 277–370, MR 1264671 .
  17. ^ Ричард Б. Винтер (2000). Оптимальный контроль . Springer. ISBN 978-0-8176-4075-0.
  18. Айвор Граттан-Гиннесс. Свертки во французской математике, 1800–1840 гг. Birkhäuser 1990. Vol. I, стр.108. [3]
  19. ^ Oeuvres , т.1, 671-732
  20. Марко Панса, «Истоки аналитической механики в 18 веке», в Hans Niels Jahnke (редактор), История анализа , 2003, с. 149

Источники [ править ]

Первоначальная версия этой статьи была взята из общедоступного ресурса A Short Account of the History of Mathematics (4-е издание, 1908 г.) У. В. Роуз Болл .

  • Мария Тереза ​​Боргато; Луиджи Пепе (1990), Лагранж, приложение для научной биографии (на итальянском языке), Турин: La Rosa
  • Колумбийская энциклопедия , 6-е изд., 2005 г., « Лагранж, Джозеф Луи ».
  • У. В. Роуз Болл , 1908, " Джозеф Луи Лагранж (1736–1813) " Краткое изложение истории математики , 4-е изд. также на Гутенберге
  • Шансон, Хьюберт, 2007, " Потенциал скорости в реальных потоках жидкости: вклад Жозефа-Луи Лагранжа" , La Houille Blanche 5: 127–31.
  • Фрейзер, Крейг Г., 2005, "Теория аналитических функций" в издании Grattan-Guinness, I. , Landmark Writings in Western Mathematics . Эльзевьер: 258–76.
  • Лагранж, Жозеф-Луи. (1811 г.). Mécanique Analytique . Курсье (переиздано Cambridge University Press , 2009; ISBN 978-1-108-00174-8 ) 
  • Lagrange, JL (1781) "Mémoire sur la Théorie du Mouvement des Fluides" (Воспоминания о теории движения жидкости) в Serret, JA, ed., 1867. Oeuvres de Lagrange, Vol. 4 . Париж »Готье-Виллар: 695–748.
  • Pulte, Helmut, 2005, "Аналитическая механика" в издании Grattan-Guinness, I., Landmark Writings in Western Mathematics . Elsevier: 208–24.
  • А. Конте; К. Мансинелли; Э. Борги .; Л. Пепе, ред. (2013), Лагранж. Un europeo a Torino (на итальянском языке), Torino: Hapax Editore, ISBN 978-88-88000-57-2

Внешние ссылки [ править ]

  • О'Коннор, Джон Дж .; Робертсон, Эдмунд Ф. , "Джозеф-Луи Лагранж" , архив истории математики MacTutor , Сент-Эндрюсский университет.
  • Вайсштейн, Эрик Вольфганг (ред.). «Лагранж, Жозеф (1736–1813)» . ScienceWorld .
  • Лагранж, Жозеф Луи де: Энциклопедия астробиологии, астрономии и космических полетов
  • Жозеф-Луи Лагранж на проекте « Математическая генеалогия»
  • Основоположники классической механики: Жозеф Луи Лагранж
  • Точки Лагранжа
  • Вывод результата Лагранжа (не метод Лагранжа)
  • Работы Лагранжа (на французском языке) Oeuvres de Lagrange, отредактированные Жозефом Альфредом Серре, Париж 1867 г., оцифрованы Göttinger Digitalisierungszentrum (Mécanique analytique находится в томах 11 и 12.)
  • Жозеф Луи де Лагранж - uvres Complètes Gallica-Math
  • Inventaire chronologique de l'œuvre de Lagrange Persee
  • Работы Жозефа-Луи Лагранжа в Project Gutenberg
  • Работы Жозефа-Луи Лагранжа или о нем в Internet Archive
  • Mécanique analytique (Париж, 1811-15)