Genetic code


The genetic code is the set of rules used by living cells to translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA) molecules to carry amino acids and to read the mRNA three nucleotides at a time. The genetic code is highly similar among all organisms and can be expressed in a simple table with 64 entries.

The codons specify which amino acid will be added next during protein biosynthesis. With some exceptions,[1] a three-nucleotide codon in a nucleic acid sequence specifies a single amino acid. The vast majority of genes are encoded with a single scheme (see the RNA codon table). That scheme is often referred to as the canonical or standard genetic code, or simply the genetic code, though variant codes (such as in mitochondria) exist.

Efforts to understand how proteins are encoded began after DNA's structure was discovered in 1953. The key discoverers, English biophysicist Francis Crick and American biologist James Watson, working together at the Cavendish Laboratory of the University of Cambridge, hypothesied that information flows from DNA and that there is a link between DNA and proteins.[2] Soviet-American physicist George Gamow was the first to give a workable scheme for protein synthesis from DNA.[3] He postulated that sets of three bases (triplets) must be employed to encode the 20 standard amino acids used by living cells to build proteins, which would allow a maximum of 43 = 64 amino acids.[4] He named this DNA–protein interaction (the original genetic code) as the "diamond code".[5]

In 1954, Gamow created an informal scientific organisation the RNA Tie Club, as suggested by Watson, for scientists of different persuasions who were interested in how proteins were synthesised from genes. However, the club could have only 20 permanent members to represent each of the 20 amino acids; and four additional honorary members to represent the four nucleotides of DNA.[6]

Первый научный вклад клуба, позже отмеченный как «одна из самых важных неопубликованных статей в истории науки» [7] и «самая известная неопубликованная статья в анналах молекулярной биологии» [8] , был сделан Криком . В январе 1955 года Крик представил членам клуба машинописную статью под названием «О вырожденных шаблонах и гипотезе адаптера: заметка для клуба РНК» [ 9] , которая «полностью изменила наше представление о синтезе белка». , как вспоминал Ватсон. [10] Гипотеза утверждает, что триплетный код не передавался аминокислотам, как думал Гамов, а переносился другой молекулой, адаптером, который взаимодействует с аминокислотами. [8] Позже адаптер был идентифицирован как тРНК. [11]

Эксперимент Крика , Бреннера, Барнетта и Уоттса-Тобина впервые продемонстрировал, что кодоны состоят из трех оснований ДНК.