Из Википедии, бесплатной энциклопедии
  (Перенаправлено с Фигурных номеров )
Перейти к навигации Перейти к поиску

Термин фигуральное число используется разными авторами для обозначения членов разных наборов чисел, обобщая от треугольных чисел до различных форм (многоугольные числа) и разных размеров (многогранные числа). Термин может означать

  • многоугольное число
  • число, представленное как дискретный r -мерный регулярный геометрический узор из r -мерных шаров, такой как многоугольное число (для r = 2 ) или многогранное число (для r = 3 ).
  • член подмножества вышеперечисленных наборов, содержащий только треугольные числа, пирамидальные числа и их аналоги в других измерениях. [1]

Терминология [ править ]

Некоторые виды фигурных чисел обсуждались в XVI и XVII веках под названием «фигуральные числа». [2]

В исторических трудах о греческой математике предпочтительным термином было числовое число . [3] [4]

В использовании Возвращаясь к Якобу Бернулли «ы Искусства предположениям , [1] термин номер фигурного используются для треугольных чисел из последовательных целых чисел , четырехгранные числа состоят из последовательных треугольных чисел, и т.д. Они оказываются в биномиальных коэффициентах . В этом случае квадратные числа (4, 9, 16, 25, ...) не будут считаться фигурными числами, если рассматривать их как расположенные в квадрате.

В ряде других источников термин « фигуральное число» используется как синоним для многоугольных чисел , либо просто обычных, либо их и центрированных многоугольных чисел . [5]

История [ править ]

Считается, что математическое изучение фигурных чисел началось с Пифагора , возможно, на основе вавилонских или египетских предшественников. Создание любого класса фигурных чисел, которые пифагорейцы изучали с помощью гномонов , также приписывается Пифагору. К сожалению, для этих утверждений нет заслуживающего доверия источника, потому что все сохранившиеся сочинения о пифагорейцах [6] относятся к столетиям позже. [7] Очевидно, что четвертое треугольное число из десяти объектов, называемое по-гречески тетрактис , было центральной частью пифагорейской религии , наряду с несколькими другими фигурами, также называемыми тетрактисом. [ необходима цитата ] Фигурные числа были предметом заботы пифагорейской геометрии.

Современное изучение фигурных чисел восходит к Пьеру де Ферма , в частности теореме Ферма о многоугольных числах . Позже это стало важной темой для Эйлера , который дал явную формулу для всех треугольных чисел, которые также являются полными квадратами , среди многих других открытий, относящихся к фигурным числам.

Фигурные числа сыграли значительную роль в современной развлекательной математике. [8] В исследовании математики, фигурные числа изучаются пути из многочленов Эрхарт , многочленов , которые рассчитывают количество целых точек в многоугольника или многогранника , когда он расширяется за счет данного фактора. [9]

Треугольные числа и их аналоги в высших измерениях [ править ]

В треугольные числа для п = 1, 2, 3, ... являются результатом сопоставления линейных чисел (линейного gnomons) для п = 1, 2, 3, ...  :

Это биномиальные коэффициенты . Это случай r = 2 того факта, что r- я диагональ треугольника Паскаля при r ≥ 0 состоит из образных чисел для r -мерных аналогов треугольников ( r -мерных симплексов ).

Симплициальные многогранные числа для r = 1, 2, 3, 4, ... :

  • (линейные числа),
  • ( треугольные числа ),
  • ( тетраэдрические числа ),
  • (пентахорические числа, пентатопические числа , 4-симплексные числа),

  • ( r -топические числа, r - симплексные числа).

Термины квадратное число и кубическое число происходят от их геометрического представления в виде квадрата или куба . Разница двух положительных треугольных чисел - это число трапеции .

Гномон [ править ]

Гномон это часть добавляется к числу фигурного , чтобы превратить его в следующем больший.

Например, гномон квадратного числа является нечетным числом , общего вида 2 п + 1 , п = 0, 1, 2, 3, ... . Квадрат 8-го размера, составленный из гномонов, выглядит так:


8 8 8 8 8 8 8 8
8 7 7 7 7 7 7 7
8 7 6 6 6 6 6 6
8 7 6 5 5 5 5 5
8 7 6 5 4 4 4 4
8 7 6 5 4 3 3 3
8 7 6 5 4 3 2 2
8 7 6 5 4 3 2 1

Чтобы преобразовать n -квадрат (квадрат размера n ) в ( n + 1) -квадрат, к нему примыкают 2 n + 1 элемента: по одному до конца каждой строки ( n элементов), по одному до конца каждого столбец ( n элементов) и один в угол. Например, преобразовывая квадрат 7 в квадрат 8, мы добавляем 15 элементов; эти дополнения - это восьмерки на рисунке выше.

Эта гномоническая техника также обеспечивает математическое доказательство того, что сумма первых n нечетных чисел равна n 2 ; рисунок показывает 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64 = 8 2 .

Заметки [ править ]

  1. ^ a b Диксон, Л. Е. , История теории чисел
  2. ^ Симпсон, JA; Weiner, ESC, ред. (1992). Компактный Оксфордский словарь английского языка (2-е изд.). Оксфорд, Англия: Clarendon Press. п. 587. Отсутствует или пусто |title=( справка )
  3. ^ Хит, Т. , История греческой математики по
  4. ^ Maziarz, EA, Греческая математическая философия
  5. ^ "Фигурные числа" . Матигон . Проверено 6 февраля 2019 .
  6. ^ Тейлор, Томас, Теоретическая арифметика пифагорейцев
  7. ^ Бойер, Карл Б .; Мерцбах, Ута К. , История математики (второе изд.), Стр. 48
  8. ^ Kraitchik, Морис (2006), математическая Recreations (второй пересмотренный ред.), Dover Books , ISBN 978-0-486-45358-3
  9. ^ Бек, М .; De Loera, JA ; Девелин, М .; Pfeifle, J .; Стэнли, Р.П. (2005), "Коэффициенты и корни многочленов Эрхарта", Целочисленные точки в многогранниках - геометрия, теория чисел, алгебра, оптимизация , Contemp. Math., 374 , Providence, RI: Amer. Математика. Soc., Стр. 15–36, MR 2134759 .

Ссылки [ править ]

  • Газале, Мидхат Дж. (1999), Гномон: от фараонов до фракталов , Princeton University Press , ISBN 978-0-691-00514-0
  • Деза, Елена; Деза, Мишель Мари (2012), Фигурные числа, Первое издание , World Scientific , ISBN 978-981-4355-48-3
  • Хит, Томас Литтл (2000), История греческой математики: Том 1. От Фалеса до Евклида , Adamant Media Corporation , ISBN 978-0-543-97448-8
  • Хит, Томас Литтл (2000), История греческой математики: Том 2. От Аристарха до Диофанта , Adamant Media Corporation , ISBN 978-0-543-96877-7
  • Диксон, Леонард Юджин (1923), История теории чисел , Chelsea Publishing Co , ASIN  B000OKO3TK
  • Бойер, Карл Б .; Мерцбах, Ута К., История математики (2-е изд.)