Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску

В математике , функция Гаусса , часто просто называют гауссовой , является функцией вида

для произвольных вещественных постоянных a , b и ненулевых c . Он назван в честь математика Карла Фридриха Гаусса . График гауссова является характерным симметричным « колоколообразной кривой » формы. Параметр a - это высота пика кривой, b - положение центра пика, а c ( стандартное отклонение , иногда называемое шириной RMS по Гауссу ) управляет шириной «колокола».

Гауссовы функции часто используются для представления функции плотности вероятности в виде нормально распределенной случайной величины с ожидаемым значением μ  =  Ь и дисперсия сг 2  =  C 2 . В этом случае гауссиан имеет вид:

[1]

Функции Гаусса широко используются в статистике для описания нормальных распределений , при обработке сигналов для определения фильтров Гаусса , при обработке изображений, где двумерные гауссианы используются для размытия по Гауссу , а также в математике для решения уравнений теплопроводности и диффузии, а также для определения уравнения Вейерштрасса. преобразовать .

Свойства [ править ]

Гауссовские функции возникают при составлении экспоненциальной функции с вогнутой квадратичной функцией :

куда:

Таким образом, гауссовские функции - это те функции, логарифм которых является вогнутой квадратичной функцией.

Параметр c связан с полной шириной пика на полувысоте (FWHM) в соответствии с

Затем функция может быть выражена через FWHM, представленную w :

В качестве альтернативы параметр c можно интерпретировать, говоря, что две точки перегиба функции находятся в x  =  b  -  c и x  =  b  +  c .

Полная ширина на десятой максимальной (FWTM) для гауссова может представлять интерес и

Гауссовские функции являются аналитическими , и их предел при x  → ∞ равен 0 (для указанного выше случая b  = 0 ).

Гауссовы функции относятся к числу тех функций, которые являются элементарными, но не имеют элементарных первообразных ; интеграл от функции Гаусса является функцией ошибки . Тем не менее их несобственные интегралы по всей действительной прямой можно вычислить точно, используя гауссовский интеграл

и получается

Этот интеграл равен 1 тогда и только тогда , когда ( постоянная нормирующий ), и в этом случае гауссова является функцией плотности вероятности из нормально распределенной случайной величины с ожидаемым значением μ  =  б и дисперсия σ 2  =  C 2 :

Эти гауссианы изображены на прилагаемом рисунке.

Нормализованные гауссовы кривые с ожидаемым значением μ и дисперсией σ 2 . Соответствующие параметры , Ь = μ и с = σ .

Гауссовы функции с центром в нуле минимизируют принцип неопределенности Фурье .

Произведение двух функций Гаусса является гауссовым, и свертки двух функций Гаусса является также гауссовым, с дисперсией , являющейся суммой исходных дисперсий: . Однако произведение двух гауссовых функций плотности вероятности (PDF), как правило, не является гауссовской PDF.

Принимая преобразование Фурье (унитарную, угловую частоту конвенции) гауссовского функции с параметрами а  = 1 , Ь  = 0 и С даешь другую функцию Гаусса, с параметрами , Ь  = 0 и . [2] Таким образом , в частности , гауссовы функции с Ь  = 0 , и которые сохранены зафиксированы преобразования Фурье (они собственные функции преобразования Фурье с собственным значением 1). Физическая реализация - это дифракционная картина : например, фотографический слайд с коэффициентом пропускания имеет гауссовскую вариацию, также является гауссовой функцией.

Тот факт, что функция Гаусса является собственной функцией непрерывного преобразования Фурье, позволяет нам вывести следующее интересное [ требуется пояснение ] тождество из формулы суммирования Пуассона :

Интеграл от функции Гаусса [ править ]

Интеграл от произвольной гауссовой функции равен

Альтернативная форма -

где f должен быть строго положительным, чтобы интеграл сходился.

Связь со стандартным гауссовским интегралом [ править ]

Интегральный

для некоторых действительных констант a, b, c> 0 можно вычислить, представив его в виде гауссова интеграла . Во-первых, константу a можно просто вывести из интеграла. Затем переменная интегрирования изменяется с x на y  =  x  -  b .

а затем в

Тогда, используя интегральное тождество Гаусса

у нас есть

Двумерная функция Гаусса [ править ]

Трехмерный график функции Гаусса с двумерной областью.

В двух измерениях степень возведения e в функции Гаусса является любой отрицательно определенной квадратичной формой. Следовательно, наборы уровней гауссиана всегда будут эллипсами.

Частным примером двумерной функции Гаусса является

Здесь коэффициент A - это амплитуда, x o , y o - центр, а σ x , σ y - размах по x и y капли. Рисунок справа был создан с использованием A = 1, x o = 0, y o = 0, σ x = σ y = 1.

Объем под функцией Гаусса определяется выражением

В общем, двумерная эллиптическая функция Гаусса выражается как

где матрица

является положительно определенной .

Используя эту формулировку, рисунок справа можно создать, используя A = 1, ( x o , y o ) = (0, 0), a = c = 1/2, b = 0.

Значение параметров для общего уравнения [ править ]

Для общей формы уравнения коэффициент A - это высота пика, а ( x oy o ) - центр капли.

Если мы установим

затем мы поворачиваем каплю на угол по часовой стрелке (для вращения против часовой стрелки поменять местами знаки в коэффициенте b ). [3] Это можно увидеть на следующих примерах:

Используя следующий код Octave , можно легко увидеть эффект изменения параметров

А  =  1 ; х0  =  0 ;  y0  =  0 ;sigma_X  =  1 ; sigma_Y  =  2 ;[ X ,  Y ]  =  сетка ( - 5 :. 1 : 5 ,  - 5 :. 1 : 5 );для  theta  =  0 : pi / 100 : pi  a  =  cos ( theta ) ^ 2 / ( 2 * sigma_X ^ 2 )  +  sin ( theta ) ^ 2 / ( 2 * sigma_Y ^ 2 );  b  =  - грех ( 2 * тета ) / ( 4 * сигма_X ^ 2 ) +  грех ( 2 * тета ) / ( 4 * сигма_Y ^ 2 );  c  =  грех ( тета ) ^ 2 / ( 2 * сигма_X ^ 2 )  +  соз ( тета ) ^ 2 / ( 2 * сигма_Y ^ 2 ); Z  =  A * exp (  -  ( a * ( X - x0 ) . ^ 2  +  2 * b * ( X - x0 ) . * ( Y - y0 )  +  c * ( Y - y0 ) . ^ 2 ));прибой ( X , Y , Z ); шейдинг  интерп ; view ( - 36 , 36 ) waitforbuttonpress end

Такие функции часто используются при обработке изображений и в вычислительных моделях функций зрительной системы - см. Статьи о масштабном пространстве и аффинном shn .

Также см. Многомерное нормальное распределение .

Гауссова или супергауссова функция высшего порядка [ править ]

Более общая формулировка функции Гаусса с плоской вершиной и спадом по Гауссу может быть взята путем возведения содержания показателя в степень :

Эта функция известна как супергауссова функция и часто используется для формулировки гауссова пучка. [4] В двумерной постановке, гауссова функция вдоль и могут быть объединены с потенциально различными и для формирования эллиптического распределения Гаусса, или прямоугольную гауссово распределение, . [5]

Многомерная функция Гаусса [ править ]

В -мерном пространстве функцию Гаусса можно определить как

где - столбец координат, - положительно определенная матрица и обозначает транспонирование матрицы .

Интеграл от этой гауссовской функции по целому -мерному пространству задается как

Его можно легко вычислить, диагонализуя матрицу и заменяя переменные интегрирования на собственные векторы матрицы .

В более общем смысле смещенная функция Гаусса определяется как

где - вектор сдвига, а матрицу можно считать симметричной,, и положительно определенной. Следующие интегралы с этой функцией могут быть вычислены с помощью того же метода:

Оценка параметров [ править ]

Ряд областей, таких как звездная фотометрия , характеристика гауссова пучка и спектроскопия линий излучения / поглощения, работают с дискретизированными функциями Гаусса и нуждаются в точной оценке параметров высоты, положения и ширины функции. Есть три неизвестных параметра для одномерной функции Гаусса ( a , b , c ) и пять для двумерной функции Гаусса .

Наиболее распространенный метод оценки гауссовых параметров - это логарифм данных и подгонка параболы к результирующему набору данных. [6] [7] Хотя это обеспечивает простую процедуру аппроксимации кривой , полученный алгоритм может быть искажен из-за чрезмерного взвешивания малых значений данных, что может привести к большим ошибкам в оценке профиля. Эту проблему можно частично компенсировать с помощью взвешенной оценки методом наименьших квадратов , уменьшая вес малых значений данных, но это также может быть смещено, если позволить хвосту гауссианы преобладать при подгонке. Чтобы устранить смещение, вместо этого можно использовать метод наименьших квадратов с повторным взвешиванием.процедура, в которой веса обновляются на каждой итерации. [7] Также возможно выполнять нелинейную регрессию непосредственно на данных, без использования логарифмического преобразования данных ; дополнительные параметры см. в разделе « Подгонка распределения вероятностей» .

Точность параметра [ править ]

Если у кого-то есть алгоритм для оценки параметров функции Гаусса, также важно знать, насколько точны эти оценки. Любой алгоритм оценки методом наименьших квадратов может предоставить числовые оценки дисперсии каждого параметра (т. Е. Дисперсии оцененной высоты, положения и ширины функции). Можно также использовать теорию границ Крамера – Рао для получения аналитического выражения для нижней границы дисперсии параметров при определенных предположениях относительно данных. [8] [9]

  1. Шум в измеренном профиле либо iid гауссовский, либо шум распределенный по Пуассону .
  2. Расстояние между каждой выборкой (т. Е. Расстояние между пикселями, измеряющими данные) одинаково.
  3. Пик является «хорошо отобранным», так что менее 10% площади или объема под пиком (площадь, если гауссиан 1D, объем, если гауссиан 2D), лежит за пределами области измерения.
  4. Ширина пика намного больше, чем расстояние между точками выборки (т. Е. Пиксели детектора должны быть как минимум в 5 раз меньше, чем гауссова FWHM).

Когда эти предположения удовлетворены, следующая матрица ковариации К применяются для параметров профилей 1D , и под н.о.р. гауссовского шума и под шумом Пуассона: [8]

где - ширина пикселей, используемых для выборки функции, - квантовая эффективность детектора и указывает стандартное отклонение шума измерения. Таким образом, индивидуальные отклонения параметров в случае гауссовского шума равны

а в случае пуассоновского шума

Для параметров 2D-профиля, задающих амплитуду , положение и ширину профиля, применяются следующие ковариационные матрицы: [9]

где дисперсии отдельных параметров даны диагональными элементами ковариационной матрицы.

Дискретный гауссов [ править ]

Дискретная гауссова ядро (сплошная линия ), по сравнению с дискретизированным гауссова ядром (пунктир) для весов

Можно попросить дискретный аналог гауссианы; это необходимо в дискретных приложениях, особенно в цифровой обработке сигналов . Простым ответом является выборка непрерывного гауссова сигнала, в результате чего получается выборочное ядро ​​Гаусса . Однако эта дискретная функция не имеет дискретных аналогов свойств непрерывной функции и может приводить к нежелательным эффектам, как описано в реализации масштабного пространства изделия .

Альтернативный подход - использовать дискретное ядро ​​Гаусса : [10]

где обозначает модифицированные функции Бесселя целого порядка.

Это дискретный аналог непрерывного гауссиана в том смысле, что он является решением дискретного уравнения диффузии (дискретное пространство, непрерывное время), так же, как непрерывный гауссиан является решением уравнения непрерывной диффузии. [11]

Приложения [ править ]

Гауссовские функции появляются во многих контекстах в естественных науках , социальных науках , математике и инженерии . Вот некоторые примеры:

  • В статистике и теории вероятностей гауссовские функции появляются как функция плотности нормального распределения , которое , согласно центральной предельной теореме , является предельным распределением вероятностей сложных сумм .
  • Гауссовы функции - это функция Грина для (однородного и изотропного) уравнения диффузии (и уравнения теплопроводности , что одно и то же), уравнения в частных производных, которое описывает временную эволюцию плотности массы при диффузии . В частности, если массовая плотность в момент времени t = 0 задается дельтой Дирака , что по существу означает, что масса изначально сосредоточена в одной точке, то распределение массы в момент времени t будет задано функцией Гаусса с параметр a линейно связан с 1 / t и cлинейно связано с t ; этот изменяющийся во времени гауссиан описывается тепловым ядром . В более общем смысле, если начальная плотность массы равна φ ( x ), то плотность массы в более поздние моменты времени получается путем свертки φ с функцией Гаусса. Свертка функции с гауссианой также известна как преобразование Вейерштрасса .
  • Функция Гаусса является волновой функцией из основного состояния в квантовом гармоническом осцилляторе .
  • В молекулярных орбиталей , используемые в вычислительной химии могут быть линейными комбинациями функций гауссовских называемых гауссовых орбиталей (смотри также базисного набора (химия) ).
  • Математически производные функции Гаусса могут быть представлены с помощью функций Эрмита . П -й производной гауссовой сама гауссова функция умножается на п -й полином Эрмита , вплоть до масштаба.
  • Следовательно, гауссовы функции также связаны с вакуумным состоянием в квантовой теории поля .
  • Гауссовы пучки используются в оптических системах, микроволновых системах и лазерах.
  • В представлении масштабного пространства функции Гаусса используются как сглаживающие ядра для создания многомасштабных представлений в компьютерном зрении и обработке изображений . В частности, производные от гауссианов ( функции Эрмита ) используются в качестве основы для определения большого количества типов визуальных операций.
  • Функции Гаусса используются для определения некоторых типов искусственных нейронных сетей .
  • В флуоресцентной микроскопии двумерная функция Гаусса используется для аппроксимации диска Эйри , описывая распределение интенсивности, создаваемое точечным источником .
  • При обработке сигналов они служат для определения фильтров Гаусса , например, при обработке изображений, где двумерные гауссианы используются для размытия по Гауссу . При цифровой обработке сигналов используется дискретное ядро ​​Гаусса , которое может быть определено путем дискретизации по Гауссу или другим способом.
  • В геостатистике они используются для понимания различий между паттернами сложного тренировочного образа . Они используются с методами ядра для кластеризации шаблонов в пространстве функций. [12]

См. Также [ править ]

  • Нормальное распределение
  • Функция Лоренца
  • Ядро радиальной базисной функции

Ссылки [ править ]

  1. ^ Сквайрс, GL (2001-08-30). Практическая физика (4-е изд.). Издательство Кембриджского университета. DOI : 10,1017 / cbo9781139164498 . ISBN 978-0-521-77940-1.
  2. ^ Вайсштейн, Эрик В. "Преобразование Фурье - гауссовский" . MathWorld . Проверено 19 декабря 2013 года .
  3. ^ Nawri, Николай. "Berechnung von Kovarianzellipsen" (PDF) . Дата обращения 14 августа 2019 .
  4. Parent, A., M. Morin и P. Lavigne. «Распространение супергауссовских распределений поля». Оптическая и квантовая электроника 24.9 (1992): S1071-S1079.
  5. ^ "Руководство по командам оптического программного обеспечения GLAD, Запись по команде GAUSSIAN" (PDF) . Прикладные оптические исследования . 2016-12-15.
  6. ^ Каруана, Ричард А .; Searle, Roger B .; Хеллер, Томас .; Шупак, Саул И. (1986). «Быстрый алгоритм разрешения спектров». Аналитическая химия . Американское химическое общество (ACS). 58 (6): 1162–1167. DOI : 10.1021 / ac00297a041 . ISSN 0003-2700 . 
  7. ^ a b Хунвэй Го, "Простой алгоритм подбора функции Гаусса", IEEE Sign. Proc. Mag. 28 (9): 134-137 (2011).
  8. ^ a b Н. Хаген, М. Купинский и Е. Л. Дерениак, "Оценка гауссовского профиля в одном измерении", Прил. Опт. 46: 5374–5383 (2007).
  9. ^ a b Н. Хаген и EL Dereniak, "Оценка гауссовского профиля в двух измерениях", Appl. Опт. 47: 6842–6851 (2008).
  10. ^ Линдеберг, Т., "Масштабное пространство для дискретных сигналов", ПАМИ (12), № 3, март 1990 г., стр. 234–254.
  11. ^ Кэмпбелл, Дж., 2007, Модель SMM как краевая задача с использованием уравнения дискретной диффузии , Theor Popul Biol. 2007 декабрь; 72 (4): 539–46.
  12. ^ Honarkhah, М и Caers, J, 2010, Стохастический Моделирование моделей с использованием основанного на расстоянии шаблон моделирования , математические наукиЗемле, 42: 487-517

Внешние ссылки [ править ]

  • Mathworld, включает доказательство связи между c и FWHM
  • «Интегрирование колоколообразной кривой» . MathPages.com .
  • Реализация распределения Гаусса на Haskell, Erlang и Perl
  • Бенсимхун Майкл, N- мерная кумулятивная функция и другие полезные факты о гауссианах и нормальных плотностях (2009)
  • Код для подгонки гауссиан в ImageJ и Фиджи.