Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску

Спектральная серия водорода в логарифмическом масштабе.

Спектр излучения атомарного водорода был разделен на ряд спектральных серий , с длинами волн , данными формулой Ридберга . Эти наблюдаемые спектральные линии обусловлены электронными делая переходы между двумя энергетическими уровнями в атоме. Классификация рядов по формуле Ридберга сыграла важную роль в развитии квантовой механики . Спектральные серии важны в астрономической спектроскопии для обнаружения присутствия водорода и расчета красных смещений .

Физика [ править ]

Электронные переходы и их результирующие длины волн для водорода. Уровни энергии не соответствуют масштабу.

Атом водорода состоит из электрона, вращающегося вокруг его ядра . Электромагнитная сила между электроном и ядерными протонами приводят к набору квантовых состояний для электрона, каждый со своей собственной энергией. Эти состояния визуализировались моделью Бора атома водорода как отдельные орбиты вокруг ядра. Каждое энергетическое состояние или орбита обозначается целым числом n, как показано на рисунке. Позже модель Бора была заменена квантовой механикой, в которой электрон занимает атомную орбиталь, а не орбиту, но разрешенные уровни энергии атома водорода остались такими же, как в более ранней теории.

Спектральное излучение происходит, когда электрон переходит или прыгает из состояния с более высокой энергией в состояние с более низкой энергией. Чтобы различать два состояния, состояние с более низкой энергией обычно обозначается как n ' , а состояние с более высокой энергией обозначается как n . Энергия излучаемого фотона соответствует разнице энергий между двумя состояниями. Поскольку энергия каждого состояния фиксирована, разница энергий между ними фиксирована, и переход всегда будет производить фотон с одинаковой энергией.

Спектральные линии сгруппированы в серии по n ' . Линии именуются последовательно, начиная с самой длинной волны / самой низкой частоты в серии, с использованием греческих букв в каждой серии. Например, линия 2 → 1 называется «Лайман-альфа» (Ly-α), а линия 7 → 3 называется «Пашен-дельта» (Pa-δ).

Диаграмма уровней энергии электронов в атоме водорода

Есть эмиссионные линии водорода, которые не попадают в эту серию, например линия 21 см . Эти эмиссионные линии соответствуют гораздо более редким атомным событиям, таким как сверхтонкие переходы. [1] структура тонкой также приводит отдельные спектральные линии , появляющихся в виде двух или более тесно сгруппирована тонких линий, из - за релятивистские поправки. [2]

В квантовой теории дискретный спектр атомной эмиссии был основан на уравнении Шредингера , которое в основном посвящено изучению энергетических спектров водородоподобных атомов, тогда как зависящее от времени эквивалентное уравнение Гейзенберга удобно при изучении атома, движущегося внешним воздействием. электромагнитная волна . [3]

В процессах поглощения или испускания фотонов атомом законы сохранения выполняются для всей изолированной системы , такой как атом плюс фотон. Поэтому движение электрона в процессе поглощения или испускания фотона всегда сопровождается движением ядра, и, поскольку масса ядра всегда конечна, энергетические спектры водородоподобных атомов должны зависеть от массы ядра . А поскольку атомы водорода имеют ядро ​​только из одного протона, энергия спектра атома водорода зависит только от ядра (например, в кулоновском поле): на самом деле масса одного протона примерно в несколько раз больше массы электрона, что дает только нулевой порядок приближенияи поэтому могут не приниматься во внимание. [3] [ требуется пояснение ]

Формула Ридберга [ править ]

Различия в энергии между уровнями в модели Бора и, следовательно, длины волн испускаемых / поглощенных фотонов задаются формулой Ридберга: [4]

куда

Z - атомный номер ,
- главное квантовое число нижнего энергетического уровня,
- главное квантовое число верхнего энергетического уровня, а
- постоянная Ридберга . (1.096 77 × 10 7  м -1 для водорода и1,097 37 × 10 7  м −1 для тяжелых металлов). [5] [6]

Значимые значения возвращаются только тогда, когда меньше чем . Обратите внимание, что это уравнение справедливо для всех водородоподобных частиц, то есть атомов, имеющих только один электрон, и частный случай спектральных линий водорода задается как Z = 1.


Серия [ править ]

Серия Лаймана ( n  = 1) [ править ]

Лайман серия из атома водорода спектральных линий в ультрафиолетовом

В модели Бора ряд Лаймана включает линии, испускаемые переходами электрона с внешней орбиты с квантовым числом n> 1 на 1-ю орбиту с квантовым числом n '= 1.

Серия названа в честь ее первооткрывателя Теодора Лаймана , открывшего спектральные линии с 1906 по 1914 год. Все длины волн в серии Лаймана находятся в ультрафиолетовом диапазоне. [7] [8]

Серия Бальмера ( n ′  = 2) [ править ]

Четыре линии видимого спектра излучения водорода в серии Бальмера. H-alpha - это красная линия справа.

В серию Бальмера входят линии переходов с внешней орбиты n> 2 на орбиту n '= 2.

Назван в честь Иоганна Бальмера , который открыл формулу Бальмера , эмпирическое уравнение для предсказания ряда Бальмера, в 1885 году. Линии Бальмера исторически называются « H-альфа », «H-бета», «H-гамма» и т. Д. , где H - элемент водород. [10] Четыре линии Бальмера находятся в технически «видимой» части спектра с длинами волн более 400 нм и короче 700 нм. Части серии Бальмера можно увидеть в солнечном спектре . H-альфа - важная линия, используемая в астрономии для обнаружения водорода.

Ряд Пашена (ряд Бора, n  = 3) [ править ]

Назван в честь немецкого физика Фридриха Пашена, который впервые наблюдал их в 1908 году. Все линии Пашена лежат в инфракрасном диапазоне. [11] Этот ряд перекрывается со следующей (Брэкеттской) серией, т. Е. Самая короткая линия в серии Брэкетта имеет длину волны, которая попадает в ряд Пашена. Все последующие серии перекрываются.

Серия Брэкетта ( n  = 4) [ править ]

Назван в честь американского физика Фредерика Самнера Брэкетта, который впервые наблюдал спектральные линии в 1922 году. [12] Спектральные линии серии Брэкетта лежат в дальнем инфракрасном диапазоне.

Серия Pfund ( n  = 5) [ править ]

Экспериментально обнаружен в 1924 году Августом Германом Пфундом . [13]

Серия Хамфриса ( n  = 6) [ править ]

Открыт в 1953 году американским физиком Кертисом Дж. Хамфрисом . [15]

Далее ( n ′  > 6) [ править ]

Дальнейшие серии безымянны, но следуют той же схеме, что диктуется уравнением Ридберга. Серии становятся все более распространенными и имеют все более длинные волны. Линии также становятся все более тусклыми, что соответствует все более редким атомным событиям. Седьмая серия атомарного водорода была впервые экспериментально продемонстрирована в инфракрасном диапазоне в 1972 году Джоном Стронгом и Питером Хансеном из Массачусетского университета в Амхерсте. [16]

Расширение на другие системы [ править ]

Концепции формулы Ридберга могут быть применены к любой системе с единственной частицей, вращающейся вокруг ядра, например иону He + или экзотическому атому мюония . Уравнение должно быть изменено на основе радиуса Бора системы ; выбросы будут иметь аналогичный характер, но в другом диапазоне энергий. В серии Пикеринг-Фаулер была первоначально отнести к неизвестной форме водорода с уровнями полуцелого переходных оба Pickering [17] [18] [19] и Fowler , [20] , но Бор правильно распознан их в качестве спектральных линий , возникающих из He + ядро. [21] [22][23]

Все другие атомы имеют по крайней мере два электрона в их нейтральной форме, и взаимодействие между этими электронами делает анализ спектра такими простыми методами, как здесь, непрактичным. Вывод формулы Ридберга был важным шагом в физике, но это произошло задолго до того, как удалось расширить спектры других элементов.

См. Также [ править ]

  • Астрономическая спектроскопия
  • Линия водорода (21 см)
  • Баранина сдвиг
  • Закон Мозли
  • Квантовая оптика
  • Теоретическое и экспериментальное обоснование уравнения Шредингера

Ссылки [ править ]

  1. ^ "21-сантиметровая линия водорода" . Гиперфизика . Государственный университет Джорджии . 2005-10-30 . Проверено 18 марта 2009 .
  2. ^ Либофф, Ричард Л. (2002). Вводная квантовая механика . Эддисон-Уэсли . ISBN 978-0-8053-8714-8.
  3. ^ а б Эндрю, А.В. (2006). «2. Уравнение Шредингера ». Атомная спектроскопия. Введение в теорию сверхтонкой структуры . п. 274. ISBN 978-0-387-25573-6.
  4. Бор, Нильс (1985), «Открытие Ридбергом спектральных законов», в Kalckar, J. (ed.), N. Bohr: Collected Works , 10 , Amsterdam: North-Holland Publ., Стр. 373–9
  5. ^ Мор, Питер Дж .; Тейлор, Барри Н .; Ньюэлл, Дэвид Б. (2008). «Рекомендуемые значения фундаментальных физических констант CODATA: 2006» (PDF) . Обзоры современной физики . 80 (2): 633–730. arXiv : 0801.0028 . Bibcode : 2008RvMP ... 80..633M . CiteSeerX 10.1.1.150.3858 . DOI : 10.1103 / RevModPhys.80.633 .  
  6. ^ "Энергии и спектр водорода" . hyperphysics.phy-astr.gsu.edu . Проверено 26 июня 2020 .
  7. ^ Лайман, Теодор (1906), «Спектр водорода в области чрезвычайно коротких волн», Мемуары Американской академии искусств и наук , новая серия, 13 (3): 125–146, Bibcode : 1906ApJ. ... 23..181L , DOI : 10,1086 / 141330 , ISSN 0096-6134 , JSTOR 25058084  
  8. ^ Лиман, Теодор (1914), "расширение спектра в экстремальных Ultra-Violet" , Nature , 93 (2323): 241, Bibcode : 1914Natur..93..241L , DOI : 10.1038 / 093241a0
  9. ^ а б в г Визе, WL; Фур, младший (2009). «Точные вероятности атомных переходов для водорода, гелия и лития» . Журнал физических и химических справочных данных . 38 (3): 565. Bibcode : 2009JPCRD..38..565W . DOI : 10.1063 / 1.3077727 .
  10. Balmer, JJ (1885), «Notiz uber die Spectrallinien des Wasserstoffs» , Annalen der Physik , 261 (5): 80–87, Bibcode : 1885AnP ... 261 ... 80B , doi : 10.1002 / andp.18852610506
  11. ^ Пашен, Фридрих (1908), "Zur Kenntnis ultraroter Linienspektra. I. (Normalwellenlängen bis 27000 Å.-E.)" , Annalen der Physik , 332 (13): 537–570, Bibcode : 1908AnP ... 332 .. 537P , doi : 10.1002 / andp.19083321303 , заархивировано из оригинала 17 декабря 2012 г.
  12. ^ Брэкетт, Фредерик Самнер (1922), «Видимое и инфракрасное излучение водорода», Astrophysical Journal , 56 : 154, Bibcode : 1922ApJ .... 56..154B , doi : 10.1086 / 142697 , hdl : 2027 / uc1 . $ b315747
  13. ^ Pfund, AH (1924), "Эмиссия азота и водорода в инфракрасном диапазоне", J. Opt. Soc. Являюсь. , 9 (3): 193-196, Bibcode : 1924JOSA .... 9..193P , DOI : 10,1364 / JOSA.9.000193
  14. ^ а б Крамида, AE; и другие. (Ноябрь 2010 г.). «Критический сборник экспериментальных данных по спектральным линиям и уровням энергии водорода, дейтерия и трития». Атомные данные и таблицы ядерных данных . 96 (6): 586–644. Bibcode : 2010ADNDT..96..586K . DOI : 10.1016 / j.adt.2010.05.001 .
  15. ^ Хамфрис, CJ (1953), «Шестая серия в спектре атомарного водорода», Журнал исследований Национального бюро стандартов , 50 : 1, DOI : 10,6028 / jres.050.001
  16. ^ Хансен, Питер; Сильный, Джон (1973). «Седьмая серия атомарного водорода». Прикладная оптика . 12 (2): 429–430. Bibcode : 1973ApOpt..12..429H . DOI : 10,1364 / AO.12.000429 .
  17. ^ Пикеринг, EC (1896). «Звезды с пекулярным спектром. Новые переменные звезды в Крюке и Лебеде». Циркуляр обсерватории Гарвардского колледжа . 12 : 1-2. Bibcode : 1896HarCi..12 .... 1P . Также опубликовано: Pickering, EC ; Флеминг, WP (1896). «Звезды с пекулярным спектром. Новые переменные звезды в Крюке и Лебеде». Астрофизический журнал . 4 : 369–370. Bibcode : 1896ApJ ..... 4..369P . DOI : 10.1086 / 140291 .
  18. ^ Пикеринг, EC (1897). «Звезды с необычным спектром. Новые переменные звезды в Крюке и Лебеде» . Astronomische Nachrichten . 142 (6): 87–90. Bibcode : 1896AN .... 142 ... 87P . DOI : 10.1002 / asna.18971420605 .
  19. ^ Пикеринг, EC (1897). «Спектр дзета Puppis». Астрофизический журнал . 5 : 92–94. Bibcode : 1897ApJ ..... 5 ... 92P . DOI : 10.1086 / 140312 .
  20. Перейти ↑ Fowler, A. (1912). «Наблюдения основной и других серий линий в спектре водорода» . Ежемесячные уведомления Королевского астрономического общества . 73 (2): 62–63. Bibcode : 1912MNRAS..73 ... 62F . DOI : 10.1093 / MNRAS / 73.2.62 .
  21. ^ Бор, Н. (1913). «Спектры гелия и водорода» . Природа . 92 (2295): 231–232. Bibcode : 1913Natur..92..231B . DOI : 10.1038 / 092231d0 .
  22. ^ Хойер, Ульрих (1981). «Строение атомов и молекул» . В Хойере, Ульрих (ред.). Нильс Бор - Собрание сочинений: Том 2 - Работы по атомной физике (1912–1917) . Амстердам: Издательская компания Северной Голландии . стр. 103–316 (особенно стр. 116–122). ISBN 978-0720418002.
  23. ^ Robotti, Надь (1983). «Спектр ζ Puppis и историческая эволюция эмпирических данных». Исторические исследования в физических науках . 14 (1): 123–145. DOI : 10.2307 / 27757527 . JSTOR 27757527 . 

Внешние ссылки [ править ]

  • Спектральная серия водородной анимации