Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску

В общей теории относительности , то метрический тензор (в этом контексте часто сокращенно просто метрика ) является основным объектом изучения. Он может свободно рассматривать как обобщение гравитационного потенциала в ньютоновской гравитации . [ Требуется уточнение ] Метрические фиксирует всю геометрическая и причинная структура из пространства - времени , которые используются для определения понятия , таких как время, расстояние, объем, кривизна, угол, и отделение прошлого и будущего.

Обозначения и соглашения [ править ]

В этой статье мы работаем с метрической сигнатурой, которая в основном положительна ( - + + + ); см. соглашение о знаках . Постоянная гравитации будет сохранена в явном виде. В этой статье используется соглашение Эйнштейна о суммировании , при котором повторяющиеся индексы автоматически суммируются.

Определение [ править ]

Математически пространства - времени представлено четырехмерного дифференцируемого многообразия и метрический тензор дается как ковариантный , второго степени , симметричного тензора на , обычно обозначаемой . Кроме того, требуется, чтобы метрика была невырожденной с сигнатурой (- + + +) . Многообразие, снабженное такой метрикой, является типом лоренцевых многообразий .

Явный, метрический тензор является симметричной билинейной формой на каждом касательном пространстве в том , что изменяется в гладком (или дифференцируемых) образом от точки к точке. Учитывая два касательных вектора и точку в , можно вычислить метрику и получить действительное число:

Это обобщение скалярного произведения обычного евклидова пространства . В отличие от евклидова пространства, где скалярное произведение положительно определено, метрика не определена и придает каждому касательному пространству структуру пространства Минковского .

Локальные координаты и матричные представления [ править ]

Физики обычно работают в локальных координатах (т.е. координата , определенный на некоторую локальную заплату из ). В локальных координатах (где - индекс от 0 до 3) метрику можно записать в виде

Факторы представляют собой градиенты одной формы скалярных координатных полей . Таким образом, метрика представляет собой линейную комбинацию тензорных произведений однотипных градиентов координат. Коэффициенты представляют собой набор из 16 действительных функций (поскольку тензор является тензорным полем , которое определено во всех точках пространственно-временного многообразия). Чтобы метрика была симметричной, мы должны иметь

давая 10 независимых коэффициентов.

Если локальные координаты указаны или поняты из контекста, метрика может быть записана как симметричная матрица 4 × 4 с элементами . Невырожденность означает, что эта матрица невырожденна (т.е. имеет не равный нулю определитель), в то время как лоренцева сигнатура означает, что матрица имеет одно отрицательное и три положительных собственных значения . Обратите внимание, что физики часто называют эту матрицу или сами координаты метрикой (см., Однако, обозначение абстрактного индекса ).

Поскольку величины рассматриваются как компоненты бесконечно малого четырехвектора координатного смещения (не путать с единичными формами того же обозначения выше), метрика определяет инвариантный квадрат бесконечно малого линейного элемента , часто называемого интервал . Интервал часто обозначают

Интервал передает информацию о причинной структуре пространства-времени . Когда , интервал подобен времени, а квадратный корень из абсолютного значения является инкрементным собственным временем . Только времениподобные интервалы может физически пройти массивный объект. Когда , интервал подобен свету, и его могут пройти только (безмассовые) объекты, движущиеся со скоростью света. Когда , интервал пространственноподобен, а квадратный корень из действует как приращение собственной длины . Пространственноподобные интервалы пересечь невозможно, поскольку они соединяют события, находящиеся вне световых конусов друг друга . События могут быть причинно связаны, только если они находятся в пределах световых конусов друг друга.

Компоненты метрики зависят от выбора локальной системы координат. При изменении координат компоненты метрики преобразуются как

Примеры [ править ]

Плоское пространство-время [ править ]

Простейшим примером лоренцевого многообразия [ требуется пояснение ] является плоское пространство-время , которое может быть задано как R 4 с координатами [ требуется пояснение ] и метрикой

Обратите внимание, что эти координаты фактически покрывают все R 4 . Метрика плоского пространства (или метрика Минковского ) часто обозначается символом η и является метрикой, используемой в специальной теории относительности . В приведенных выше координатах матричное представление η имеет вид

(Альтернативное соглашение заменяет координату на и определяет как в пространстве Минковского § Стандартный базис .)

В сферических координатах метрика плоского пространства принимает вид

куда

стандартная метрика на двумерной сфере [ требуется пояснение ] .

Показатели черной дыры [ править ]

Метрика Шварцшильда описывает незаряженную невращающуюся черную дыру. Есть также метрики, описывающие вращающиеся и заряженные черные дыры.

Метрика Шварцшильда [ править ]

Помимо метрики плоского пространства, наиболее важной метрикой в ​​общей теории относительности является метрика Шварцшильда, которая может быть задана в одном наборе локальных координат следующим образом:

где, опять же, - стандартная метрика на 2-сфере . Здесь - гравитационная постоянная, а - постоянная, зависящая от размеров массы . Его вывод можно найти здесь . Метрика Шварцшильда приближается к метрике Минковского по мере приближения к нулю (за исключением начала координат, где она не определена). Точно так же, когда уходит в бесконечность, метрика Шварцшильда приближается к метрике Минковского.

С координатами

мы можем записать метрику как

Некоторые другие системы координат были разработаны для метрики Шварцшильда: координаты Эддингтона-Финкельштейн , координаты Голстранда Пенлеве , координата Крускала-Шекерес и координата Леметра .

Вращающиеся и заряженные черные дыры [ править ]

Решение Шварцшильда предполагает объект, который не вращается в пространстве и не заряжается. Чтобы учесть заряд, метрика должна удовлетворять уравнениям Эйнштейна Поля, как и раньше, а также уравнениям Максвелла в искривленном пространстве-времени. Заряженная невращающаяся масса описывается метрикой Рейсснера – Нордстрема .

Вращающиеся черные дыры описываются Керра метрикой а Керра-Ньюмена метрики . [ требуется дальнейшее объяснение ]

Другие показатели [ править ]

Другие примечательные показатели:

  • Метрика Алькубьерре ,
  • показатели де Ситтера / анти-де Ситтера ,
  • Метрика Фридмана – Лемэтра – Робертсона – Уолкера ,
  • Изотропные координаты ,
  • Метрика Лемэтра – Толмана (также известная как метрика Бонди [ требуется пояснение ] ),
  • Метрика Переса ,
  • Координаты Риндлера ,
  • Координаты Вейля-Льюиса-Папапетру ,
  • Метрика Гёделя .

Некоторые из них не имеют горизонта событий или могут быть без гравитационной сингулярности .

Объем [ править ]

Метрика g индуцирует естественную форму объема (с точностью до знака), которую можно использовать для интегрирования по области многообразия. Учитывая локальные координаты многообразия, форму объема можно записать

где - определитель матрицы компонент метрического тензора для данной системы координат.

Кривизна [ править ]

Метрика полностью определяет кривизну пространства-времени. Согласно основной теореме римановой геометрии , на любом полуримановом многообразии существует единственная связность ∇ , согласованная с метрикой и не имеющая кручения . Эта связь называется связью Леви-Чивита . Эти символы Кристоффеля этой связи приведены в терминах частных производных метрики в локальных координатах по формуле

(где запятые обозначают частные производные ).

Кривизна пространства-времени тогда задается тензором кривизны Римана, который определяется в терминах связности Леви-Чивиты ∇. В локальных координатах этот тензор имеет вид:

Тогда кривизна выражается исключительно в терминах метрики и ее производных.

Уравнения Эйнштейна [ править ]

Одна из основных идей общей теории относительности состоит в том, что метрика (и связанная с ней геометрия пространства-времени) определяется материей и энергетическим содержанием пространства-времени . Полевые уравнения Эйнштейна :

где тензор кривизны Риччи

и скалярная кривизна

свяжут метрику (и соответствующие тензоры кривизны) с тензором энергии-импульса . Это тензорное уравнение представляет собой сложную систему нелинейных уравнений в частных производных для компонентов метрики. Точные решения уравнений поля Эйнштейна найти очень сложно.

См. Также [ править ]

  • Альтернативы общей теории относительности
  • Основное введение в математику искривленного пространства-времени
  • Математика общей теории относительности
  • Исчисление Риччи

Ссылки [ править ]

  • Список ссылок см. В ресурсах по общей теории относительности .