Из Википедии, бесплатной энциклопедии
  (Перенаправлено с Параболоида революции )
Перейти к навигации Перейти к поиску
Параболоид революции

В геометрии , A параболоида является поверхность второго порядка, которая имеет ровно одну ось симметрии и нет центра симметрии . Термин «параболоид» происходит от слова « парабола» , обозначающего коническое сечение , обладающее аналогичным свойством симметрии.

Каждое плоское сечение параболоида плоскостью, параллельной оси симметрии, является параболой. Параболоид является гиперболическим, если любое другое плоское сечение является либо гиперболой , либо двумя пересекающимися линиями (в случае сечения касательной плоскостью). Параболоид является эллиптическим, если любое другое непустое сечение плоскости является либо эллипсом , либо единственной точкой (в случае сечения касательной плоскостью). Параболоид бывает эллиптическим или гиперболическим.

Эквивалентно параболоид может быть определен как квадратная поверхность, которая не является цилиндром , и имеет неявное уравнение , часть второй степени которого может быть разложена на комплексные числа на два различных линейных фактора. Параболоид является гиперболическим, если факторы действительны; эллиптический, если множители комплексно сопряжены .

Эллиптический параболоид имеет форму овальной чашки и имеет точку максимума или минимума, когда его ось вертикальна. В подходящей системе координат с тремя осями x , y и z это может быть представлено уравнением [1] : 892

где a и b - константы, которые определяют уровень кривизны в плоскостях xz и yz соответственно. В этом положении эллиптический параболоид открывается вверх.

Гиперболический параболоид

Гиперболоидный параболоид (не путать с гиперболоидом ) - это поверхность с двойной линейкой, имеющая форму седла . В подходящей системе координат гиперболический параболоид можно представить уравнением [2] [3] : 896

В этом положении гиперболический параболоид открывается вниз по оси x и вверх по оси y (то есть парабола в плоскости x = 0 открывается вверх, а парабола в плоскости y = 0 открывается вниз).

Любой параболоид (эллиптический или гиперболический) является трансляционной поверхностью , так как он может быть создан движущейся параболой, направленной второй параболой.

Свойства и приложения [ править ]

Эллиптический параболоид [ править ]

Многоугольная сетка кругового параболоида
Круговой параболоид

В подходящей декартовой системе координат эллиптический параболоид имеет уравнение

Если a = b , эллиптический параболоид - это круговой параболоид или параболоид вращения . Это поверхность вращения, полученная путем вращения параболы вокруг своей оси.

Очевидно, круговой параболоид содержит круги. Это верно и в общем случае (см. Раздел Циркуляр ).

С точки зрения проективной геометрии , эллиптический параболоид является эллипсоидом , что является касательной к плоскости на бесконечности .

Плоские секции

Плоские сечения эллиптического параболоида могут быть:

  • парабола , если плоскость параллельна оси,
  • точка , если плоскость является касательной плоскостью .
  • эллипс или опорожнить , в противном случае.

Параболический отражатель [ править ]

На оси кругового параболоида есть точка, называемая фокусом (или фокусной точкой ), так что, если параболоид является зеркалом, свет (или другие волны) от точечного источника в фокусе отражается в параллельный луч. , параллельно оси параболоида. Это также работает наоборот: параллельный луч света, параллельный оси параболоида, концентрируется в фокусной точке. Для доказательства см. Парабола § Доказательство отражательного свойства .

Поэтому форма круглого параболоида широко используется в астрономии для параболических отражателей и параболических антенн.

Поверхность вращающейся жидкости также представляет собой круговой параболоид. Это используется в телескопах с жидкостными зеркалами и в изготовлении твердых зеркал телескопов (см. Вращающуюся печь ).

  • Параллельные лучи, попадающие в круглое параболоидальное зеркало, отражаются к фокусной точке F или наоборот.

  • Параболический отражатель

  • Вращающаяся вода в стакане

Гиперболический параболоид [ править ]

Гиперболический параболоид с содержащимися в нем прямыми
Жареные закуски Pringles имеют форму гиперболического параболоида.

The hyperbolic paraboloid is a doubly ruled surface: it contains two families of mutually skew lines. The lines in each family are parallel to a common plane, but not to each other. Hence the hyperbolic paraboloid is a conoid.

These properties characterize hyperbolic paraboloids and are used in one of the oldest definitions of hyperbolic paraboloids: a hyperbolic paraboloid is a surface that may be generated by a moving line that is parallel to a fixed plane and crosses two fixed skew lines.

This property makes it simple to manufacture a hyperbolic paraboloid from a variety of materials and for a variety of purposes, from concrete roofs to snack foods. In particular, Pringles fried snacks resemble a truncated hyperbolic paraboloid.[4]

A hyperbolic paraboloid is a saddle surface, as its Gauss curvature is negative at every point. Therefore, although it is a ruled surface, it is not developable.

From the point of view of projective geometry, a hyperbolic paraboloid is one-sheet hyperboloid that is tangent to the plane at infinity.

A hyperbolic paraboloid of equation or (this is the same up to a rotation of axes) may be called a rectangular hyperbolic paraboloid, by analogy with rectangular hyperbolas.

Plane sections
A hyperbolic paraboloid with hyperbolas and parabolas

A plane section of a hyperbolic paraboloid with equation

can be

  • a line, if the plane is parallel to the z-axis, and has an equation of the form ,
  • a parabola, if the plane is parallel to the z-axis, and the section is not a line,
  • a pair of intersecting lines, if the plane is a tangent plane,
  • a hyperbola, otherwise.
Examples in architecture
  • St. Mary's Cathedral, Tokyo, Japan (1964)
  • Cathedral of Saint Mary of the Assumption, San Francisco, California, USA (1971)
  • Saddledome in Calgary, Alberta, Canada (1983)
  • L'Oceanogràfic in Valencia, Spain (2003)
  • London Velopark, England (2011)
  • Warszawa Ochota railway station, an example of a hyperbolic paraboloid structure

  • Surface illustrating a hyperbolic paraboloid

  • Restaurante Los Manantiales, Xochimilco, Mexico

  • Hyperbolic paraboloid thin-shell roofs at L'Oceanogràfic, Valencia, Spain (taken 2019)

Cylinder between pencils of elliptic and hyperbolic paraboloids[edit]

elliptic paraboloid, parabolic cylinder, hyperbolic paraboloid

The pencil of elliptic paraboloids

and the pencil of hyperbolic paraboloids

approach the same surface

for , which is a parabolic cylinder (see image).

Curvature[edit]

The elliptic paraboloid, parametrized simply as

has Gaussian curvature

and mean curvature

which are both always positive, have their maximum at the origin, become smaller as a point on the surface moves further away from the origin, and tend asymptotically to zero as the said point moves infinitely away from the origin.

The hyperbolic paraboloid,[2] when parametrized as

has Gaussian curvature

and mean curvature

Geometric representation of multiplication table[edit]

If the hyperbolic paraboloid

is rotated by an angle of π/4 in the +z direction (according to the right hand rule), the result is the surface

and if a = b then this simplifies to

.

Finally, letting a = 2, we see that the hyperbolic paraboloid

is congruent to the surface

which can be thought of as the geometric representation (a three-dimensional nomograph, as it were) of a multiplication table.

The two paraboloidal 2 → ℝ functions

and

are harmonic conjugates, and together form the analytic function

which is the analytic continuation of the ℝ → ℝ parabolic function f(x) = x2/2.

Dimensions of a paraboloidal dish[edit]

The dimensions of a symmetrical paraboloidal dish are related by the equation

where F is the focal length, D is the depth of the dish (measured along the axis of symmetry from the vertex to the plane of the rim), and R is the radius of the rim. They must all be in the same unit of length. If two of these three lengths are known, this equation can be used to calculate the third.

A more complex calculation is needed to find the diameter of the dish measured along its surface. This is sometimes called the "linear diameter", and equals the diameter of a flat, circular sheet of material, usually metal, which is the right size to be cut and bent to make the dish. Two intermediate results are useful in the calculation: P = 2F (or the equivalent: P = R2/2D) and Q = P2 + R2, where F, D, and R are defined as above. The diameter of the dish, measured along the surface, is then given by

where ln x means the natural logarithm of x, i.e. its logarithm to base e.

The volume of the dish, the amount of liquid it could hold if the rim were horizontal and the vertex at the bottom (e.g. the capacity of a paraboloidal wok), is given by

where the symbols are defined as above. This can be compared with the formulae for the volumes of a cylinder (πR2D), a hemisphere (/3R2D, where D = R), and a cone (π/3R2D). πR2 is the aperture area of the dish, the area enclosed by the rim, which is proportional to the amount of sunlight a reflector dish can intercept. The surface area of a parabolic dish can be found using the area formula for a surface of revolution which gives

See also[edit]

  • Ellipsoid – Quadric surface that looks like a deformed sphere
  • Hyperboloid – Unbounded quadric surface
  • Parabolic loudspeaker – Parabolic-shaped speaher producing coherent plane waves
  • Parabolic reflector – Reflector that has the shape of a paraboloid

References[edit]

  1. ^ Thomas, George B.; Maurice D. Weir; Joel Hass; Frank R. Giordiano (2005). Thomas' Calculus 11th ed. Pearson Education, Inc. p. 892. ISBN 0-321-18558-7.
  2. ^ a b Weisstein, Eric W. "Hyperbolic Paraboloid." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HyperbolicParaboloid.html
  3. ^ Thomas, George B.; Maurice D. Weir; Joel Hass; Frank R. Giordiano (2005). Thomas' Calculus 11th ed. Pearson Education, Inc. p. 896. ISBN 0-321-18558-7.
  4. ^ Zill, Dennis G.; Wright, Warren S. (2011), Calculus: Early Transcendentals, Jones & Bartlett Publishers, p. 649, ISBN 9781449644482.

External links[edit]

  • Media related to Paraboloid at Wikimedia Commons