Из Википедии, бесплатной энциклопедии
  (Перенаправлен из Сокращения структурной группы )
Перейти к навигации Перейти к поиску

В дифференциальной геометрии , A G -структуры на п - многообразие М , для данной структуры группы [1] G , является главным G - подрасслоением из касательного расслоения кадра F M (или GL ( M )) из М .

Понятие G -структуры включает различные классические структуры, которые могут быть определены на многообразиях, которые в некоторых случаях являются тензорными полями . Например, для ортогональной группы O ( n ) -структура определяет риманову метрику , а для специальной линейной группы SL ( n , R ) -структура совпадает с формой объема . Для тривиальной группы { e } -структура состоит из абсолютного параллелизма многообразия.

Обобщая эту идею произвольных главных расслоений на топологических пространствах, можно спросить , если главное расслоение над группой «происходит от» подгруппы из . Это называется редукцией структурной группы (к ).

Некоторые структуры на многообразиях, такие как комплексная структура , симплектическая структура или кэлерова структура , являются G -структурами с дополнительным условием интегрируемости .

Сокращение структурной группы [ править ]

Можно спросить , если главное расслоение над группой «происходит от» подгруппы из . Это называется редукцией структурной группы (до ) и имеет смысл для любой карты , которая не обязательно должна быть картой включения (несмотря на терминологию).

Определение [ править ]

Далее пусть - топологическое пространство , топологические группы и гомоморфизм групп .

Что касается конкретных связок [ править ]

Учитывая принципиальное -расслоение кадра , уменьшение структурной группы (от до ) является расслоением и изоморфизмом в ассоциированном расслоении к исходному расслоению.

Что касается классификации пространств [ править ]

Для карты , где - классифицирующее пространство для -расслоений, редукция структурной группы является отображением и гомотопией .

Свойства и примеры [ править ]

Редукции структурной группы не всегда существуют. Если они существуют, они обычно не уникальны, поскольку изоморфизм является важной частью данных.

В качестве конкретного примера, каждое четное вещественное векторное пространство изоморфно основному реальному пространству комплексного векторного пространства: оно допускает линейную комплексную структуру . Вещественное векторное расслоение допускает почти сложную структуру тогда и только тогда, когда оно изоморфно основному вещественному расслоению комплексного векторного расслоения. Тогда это редукция по включению GL ( n , C ) → GL (2 n , R )

С точки зрения карт переходных , A G -расслоение может быть уменьшена , если и только если могут быть взяты карты переходов , чтобы иметь значения в H . Обратите внимание, что термин сокращение вводит в заблуждение: он предполагает, что H является подгруппой G , что часто имеет место, но не обязательно (например, для спиновых структур ): это правильно называется подъемом .

Более абстрактно, « G- расслоения над X » - это функтор [2] в G : если дано отображение HG , можно получить отображение из H -расслоений в G- расслоения путем индуцирования (как выше). Снижение структурной группы в G -расслоения B является выборе H -расслоение, образ которого является Б .

Индуцирующее отображение из H- расслоений в G- расслоения, как правило, не является ни взаимно однозначным, так что структурная группа не всегда может быть сокращена, а когда это возможно, это сокращение не обязательно должно быть уникальным. Например, не всякое многообразие ориентируемо , а ориентируемые допускают ровно две ориентации.

Если H - замкнутая подгруппа группы G , то существует естественное взаимно однозначное соответствие между редукциями G -расслоения B к H и глобальными сечениями расслоения B / H, полученными путем факторизации B по правому действию H . В частности, расслоение BB / H является главным Н -расслоение над B / H . Если σ: XB / H - сечение, тоиндуцированное расслоение В Н = σ -1 B является уменьшение B . [3]

G -структуры [ править ]

Каждое векторное расслоение размерности имеет каноническое -расслоение - расслоение реперов . В частности, каждое гладкое многообразие имеет каноническое векторное расслоение - касательное расслоение . Для группы Ли и группового гомоморфизма a -структура является редукцией структурной группы расслоения реперов к .

Примеры [ править ]

Следующие примеры определены для вещественных векторных расслоений , в частности касательного расслоения в виде гладкого многообразия .

Некоторые -структуры определены условия других: Учитывая риманова метрика на ориентированном многообразии, A -структуре для 2-кратного крышки является спиновой структуры . (Обратите внимание, что гомоморфизм групп здесь не является включением.)

Основные пакеты [ править ]

Хотя теория главных расслоений играет важную роль в изучении G-структур , эти два понятия различны. G -структура является главным подрасслоением пучка касательного кадра , но тот факт , что G -структуры пучок состоит из касательных кадров рассматриваются как часть данных. Например, рассмотрим две римановы метрики на R n . Ассоциированные O ( n ) -структуры изоморфны тогда и только тогда, когда метрики изометричны. Но, поскольку R n стягиваем, лежащий в основе O ( n) -расслоения всегда будут изоморфными как главные расслоения, потому что единственные расслоения над стягиваемыми пространствами являются тривиальными расслоениями.

Это фундаментальное различие между двумя теориями можно уловить, предоставив дополнительные данные о базовой G- связке G-структуры : форме припоя . Форма припоя - это то, что связывает основное основное расслоение G -структуры с локальной геометрией самого многообразия, задавая канонический изоморфизм касательного расслоения M к ассоциированному векторному расслоению . Хотя форма припоя не является формой соединения , иногда ее можно рассматривать как предшественницу таковой.

Более подробно, предположим, что Q - главное расслоение G -структуры. Если Q реализуются как уменьшение кадра пучка М , то форма припоя задается откатом в тавтологических виде рамы пучка вдоль включения. Абстрактно, если рассматривать Q как главное расслоение независимо от его реализации как редукции расслоения фреймов, то форма припоя состоит из представления ρ группы G на R n и изоморфизма расслоений θ: TMQ × ρ R n .

Условия интегрируемости и плоские G -структуры [ править ]

Некоторые структуры на многообразиях, такие как комплексная структура, симплектическая структура или кэлерова структура , являются G -структурами (и, следовательно, могут быть заблокированы), но должны удовлетворять дополнительному условию интегрируемости . Без соответствующего условия интегрируемости структура вместо этого называется «почти» структурой, как в почти сложной структуре , почти симплектической структуре или почти кэлеровской структуре .

В частности, структура симплектического многообразия является более сильным понятием, чем G -структура для симплектической группы . Симплектическая структура на многообразии - это невырожденная 2-форма ω на M (которая является -структурой или почти симплектической структурой) вместе с дополнительным условием, что d ω = 0; последнее называется условием интегрируемости .

Точно так же слоения соответствуют G -структурам, происходящим из блочных матриц , вместе с условиями интегрируемости, так что применима теорема Фробениуса .

Плоская G -структура является G -структуры Р , имеющим глобальное сечение ( V 1 , ..., V п ) , состоящим из коммутирующих векторных полей . G -структура является интегрируемой (или локально плоской ) , если она локально изоморфна плоской G -структуры.

Изоморфизм G -структур [ править ]

Множество диффеоморфизмов из М , что сохраняет G -структуры называется группой автоморфизмов этой структуры. Для O ( n ) -структуры они являются группой изометрий римановой метрики и для SL ( n , R ) -структур сохраняющих объем отображений.

Пусть Р будет G -структуры на многообразии M , а Q G -структуры на многообразии N . Тогда изоморфизм из G -структуры является диффеоморфизм е  : МN такое , что прямым образом линейных кадров F *  : FM - → FN ограничивает , чтобы дать отображение Р в Q . (Обратите внимание, что достаточно, чтобы Q содержалось в образе f * .)G -структуры Р и Q являются локально изоморфными , если М допускает покрытие открытыми множествами U и семейство диффеоморфизмов F U  : UF ( U ) ⊂ N такая , что F U индуцирует изоморфизм Р | UQ | f ( U ) .

Автоморфизм из G -структуры является изоморфизмом G -структура P с самими собой. Автоморфизмы часто возникают [6] при изучении групп преобразований геометрических структур, так как многие важные геометрические структуры на многообразии могут быть реализованы как G -структуры.

Широкий класс проблем эквивалентности можно сформулировать на языке G -структур. Например, пара римановых многообразий (локально) эквивалентна тогда и только тогда, когда их пучки ортонормированных реперов являются (локально) изоморфными G -структурами. С этой точки зрения, общая процедура решения проблемы эквивалентности состоит в построении системы инвариантов для G -структуры, которые затем достаточны для определения, является ли пара G -структур локально изоморфной или нет.

Соединения на G -структуры [ править ]

Пусть Q будет G -структуры на М . Принципиальные схема соединения на главном расслоении Q индуцирует соединение на любом ассоциированном векторном расслоении: в частности , на касательном расслоении. Линейная связность ∇ на ТМ , возникающие таким образом , как говорят, совместим с Q . Соединения, совместимые с Q , также называются адаптированными соединениями .

Конкретно говоря, адаптированные соединения можно понимать в терминах движущейся рамы . [7] Предположим , что V я является основой локальных сечений ТМ (т.е. кадр на М ) , который определяет сечение Q . Любая связность ∇ определяет систему зависимых от базиса 1-форм ω посредством

X V i = ω i j (X) V j

где как матрица 1-форм ω ∈ Ω 1 (M) ⊗ gl ( n ). Адаптированная соединение, для которого ω принимает значения в алгебре Ли д в G .

Кручение G -структурой [ править ]

С любой G-структурой связано понятие кручения, связанного с кручением связности. Заметим, что данная G-структура может допускать множество различных совместимых связей, которые, в свою очередь, могут иметь разные кручения, но, несмотря на это, можно дать независимое понятие кручения G-структуры следующим образом. [8]

Разность два приспособленных соединений является 1-формой на М со значениями в к сопряженному расслоению Ad Q . Иными словами, пространство адаптированных связностей A Q является аффинным пространством для Ω 1 (Ad Q ).

Кручения адаптированной связи определяет отображение

в 2-формы с коэффициентами в TM . Эта карта линейна; его линеаризация

называется алгебраическим торсионным отображением . Для двух адаптированных связностей ∇ и ∇ ′ их тензоры кручения T , T ∇ ′ отличаются на τ (∇ − ∇ ′). Следовательно, образ T в coker (τ) не зависит от выбора ∇.

Изображение T в коксовании (т) для любой адаптированной связности ∇ называется кручением из G -структуры. Г -структура называется кручение , если ее кручение пропадает. Это происходит именно тогда, когда Q допускает адаптированное соединение без кручения.

Пример: кручение для почти сложных конструкций [ править ]

Примером G -структуры является почти комплексная структура , т. Е. Приведение структурной группы четномерного многообразия к GL ( n , C ). Такое снижение однозначно определяется с помощью C -линейный эндоморфизм J ∈ End ( TM ) таким образом, что J 2 = -1. В этой ситуации кручение можно явно вычислить следующим образом.

Легкий подсчет размеров показывает, что

,

где Ω 2,0 ( TM ) - пространство форм B ∈ Ω 2 ( TM ), удовлетворяющих

Следовательно, кручение почти комплексной структуры можно рассматривать как элемент в Ω 2,0 ( TM ). Легко проверить, что кручение почти комплексной структуры равно ее тензору Нийенхейса .

Высший порядок G -структур [ править ]

Наложение условий интегрируемости на конкретную G-структуру (например, в случае симплектической формы) может быть решено через процесс продолжения . В таких случаях продолженная G -структура не может быть отождествлена ​​с G -подрасслоением расслоения линейных реперов. Однако во многих случаях продолжение является главным расслоением само по себе, и его структурная группа может быть отождествлена ​​с подгруппой группы струй более высокого порядка . В этом случае она называется G- структурой более высокого порядка [Кобаяши]. В общем, к таким случаям применим метод эквивалентности Картана .

См. Также [ править ]

  • G 2 -конструкция

Примечания [ править ]

  1. ^ Что являетсяотображением группы Ли в общую линейную группу . Часто, но не всегда, это подгруппа Ли ; например, для спиновой структуры карта представляет собой покрывающее пространство на ее изображении.
  2. ^ Действительно, это бифунктор в G и X .
  3. ^ В классической теории поля такой разделописывает классическое поле Хиггса ( Сарданашвили, Г. (2006). «Геометрия классических полей Хиггса». International Journal of Geometric Methods in Modern Physics . 03 : 139–148. ArXiv : hep- й / 0510168 . DOI : 10.1142 / S0219887806001065 .).
  4. ^ Это гравитационное поле в калибровочной теории гравитации ( Сарданашвили, Г. (2006). "Калибровочная теория гравитации с геометрической точки зрения". Международный журнал геометрических методов в современной физике . 3 (1): v – xx. ArXiv : gr -QC / 0512115 . Bibcode : 2005gr.qc .... 12115S .)
  5. ^ a b Бесс 1987 , §14.61
  6. Кобаяши (1972).
  7. Кобаяши (1972) I.4.
  8. ^ Годушона (1997).

Ссылки [ править ]

  • Черн, Шиинг-Шэнь (1966). «Геометрия G-структур » . Бюллетень Американского математического общества . 72 (2): 167–219. DOI : 10.1090 / S0002-9904-1966-11473-8 .
  • Годюшон, Поль (1997). «Канонические связи для почти гиперкомплексных структур». Комплексный анализ и геометрия . Pitman Research Notes in Mathematics Series. Лонгман. С. 123–136.
  • Кобаяси, Шошичи (1972). Группы преобразований в дифференциальной геометрии . Классика по математике. Springer. ISBN 978-3-540-58659-3. OCLC  31374337 .
  • Штернберг, Шломо (1983). Лекции по дифференциальной геометрии ((2-е изд.) Изд.). Нью-Йорк: ISBN Chelsea Publishing Co. 978-0-8218-1385-0. OCLC  43032711 .
  • Година, Марко; Маттеуччи, Паоло (2003). «Редуктивные G-структуры и производные Ли». Журнал геометрии и физики . 47 (1): 66–86. arXiv : math / 0201235 . Bibcode : 2003JGP .... 47 ... 66G . DOI : 10.1016 / S0393-0440 (02) 00174-2 . MR  2006 228 .