Страница полузащищенная
Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску

Квадратичная формула выражает решение уравнения ах 2 + BX + C = 0 , где не равна нулю, в терминах его коэффициентов , б и гр .

Алгебра (от арабского : الجبر аль-джабры , что означает «воссоединение разбитых частей» [1] и «bonesetting» [2] ) является одним из самых широких областей в области математики , вместе с теорией чисел , геометрией и анализом . В самом общем виде алгебра - это изучение математических символов и правил манипулирования этими символами; [3] это объединяющая нить почти всей математики. [4] Он включает в себя все, от решения элементарных уравнений до изучения абстракций, таких как группы ,кольца и поля . Более основные части алгебры называются элементарной алгеброй ; более абстрактные части называются абстрактной алгеброй или современной алгеброй. Элементарная алгебра обычно считается необходимой для любого изучения математики, естествознания или инженерии, а также таких приложений, как медицина и экономика. Абстрактная алгебра - это основная область высшей математики, которую изучают в основном профессиональные математики.

Элементарная алгебра отличается от арифметики использованием абстракций, таких как использование букв для обозначения чисел, которые либо неизвестны, либо могут принимать множество значений. [5] Например, в письме неизвестный, но применение добавок инверсий может выявить его значение: . В E = mc 2 буквы и являются переменными, а буква - постоянной скоростью света в вакууме. Алгебра дает методы написания формул и решения уравнений, которые намного яснее и проще, чем старый метод написания всего словами.

Слово « алгебра» также используется определенным образом. Особый вид математического объекта в абстрактной алгебре называется «алгебра», и это слово используется, например, во фразах линейная алгебра и алгебраическая топология .

Математика, занимающегося алгеброй, называют алгебраистом .

Этимология

Слово « алгебра» происходит от названия книги Мухаммада ибн Мусы аль-Хорезми . [6]

Слово « алгебра» происходит от арабского الجبر ( al-jabr, букв. « Восстановление сломанных частей») из названия книги начала 9-го века c Ilm al-jabr wa l-muqābala «Наука восстановления и уравновешивания» автора Персидский математик и астроном аль-Хорезми . В его работе термин аль-джабр относится к операции по перемещению члена из одной части уравнения в другую, المقابلة al-muqābala «балансировка» относится к добавлению равных членов к обеим сторонам. Укоротить до algeber или алгебрыв латыни это слово в конечном итоге вошло в английский язык в пятнадцатом веке из испанской, итальянской или средневековой латыни . Первоначально он относился к хирургической процедуре установки сломанных или вывихнутых костей. Математическое значение было впервые записано (на английском языке) в шестнадцатом веке. [7]

Различные значения слова «алгебра»

Слово «алгебра» имеет несколько связанных значений в математике как отдельное слово или с определителями.

  • Одним словом без артикля «алгебра» обозначает большую часть математики.
  • Как одно слово со статьей или во множественном числе, «алгебра» или «алгебры» обозначает конкретную математическую структуру, точное определение которой зависит от контекста. Обычно в структуре есть сложение, умножение и скалярное умножение (см. Алгебра над полем ). Когда некоторые авторы используют термин «алгебра», они делают подмножество следующих дополнительных предположений: ассоциативные , коммутативные , унитальные и / или конечномерные. В универсальной алгебре слово «алгебра» относится к обобщению вышеупомянутого понятия, которое допускает n-арные операции .
  • С квалификатором существует такое же различие:
    • Без статьи это означает часть алгебры, такую ​​как линейная алгебра , элементарная алгебра (правила манипулирования символами, преподаваемые на элементарных курсах математики в рамках начального и среднего образования ) или абстрактную алгебру (изучение алгебраических структур для самих себя).
    • Под статьей это означает экземпляр некоторой абстрактной структуры, такой как алгебра Ли , ассоциативная алгебра или алгебра вершинных операторов .
    • Иногда оба значения существуют для одного и того же квалификатора, как в предложении: Коммутативная алгебра - это исследование коммутативных колец , которые являются коммутативными алгебрами над целыми числами .

Алгебра как раздел математики

Алгебра началась с вычислений, аналогичных арифметическим , с буквами, обозначающими числа. [5] Это позволяло доказывать истинность свойств независимо от того, какие числа используются. Например, в квадратном уравнении

могут быть любыми числами (за исключением того, что не может быть ), и квадратная формула может использоваться для быстрого и легкого нахождения значений неизвестной величины, которые удовлетворяют уравнению. То есть найти все решения уравнения.

Исторически сложилось так, что в настоящее время изучение алгебры начинается с решения уравнений, таких как квадратное уравнение, приведенное выше. Затем более общие вопросы, такие как «имеет ли уравнение решение?», «Сколько решений имеет уравнение?», «Что можно сказать о природе решений?» считаются. Эти вопросы привели к расширению алгебры до нечисловых объектов, таких как перестановки , векторы , матрицы и полиномы . Структурные свойства этих нечисловых объектов затем были абстрагированы в алгебраические структуры, такие как группы , кольца и поля .

До 16 века математика была разделена только на две области: арифметику и геометрию . Несмотря на то, что некоторые методы, которые были разработаны намного раньше, в настоящее время можно рассматривать как алгебру, появление алгебры и, вскоре после этого, исчисления бесконечно малых как подполей математики относится только к XVI или XVII веку. Со второй половины XIX века появилось много новых областей математики, в большинстве из которых использовались как арифметика, так и геометрия, и почти во всех использовалась алгебра.

Сегодня алгебра выросла до тех пор, пока она не включает множество разделов математики, что можно увидеть в классификации предметов математики [8], где ни одна из областей первого уровня (двухзначные записи) не называется алгеброй . Сегодня алгебра включает в себя раздел 08 - Общие алгебраические системы, 12 - Теория поля и многочлены , 13 - Коммутативная алгебра , 15 - Линейная и полилинейная алгебра ; теория матриц , 16- Ассоциативные кольца и алгебры , 17- Неассоциативные кольца и алгебры , 18- Теория категорий ; гомологическая алгебра , 19-K-теория и 20- теория групп . Алгебра также широко используется в 11- теории чисел и 14- алгебраической геометрии .

История

Ранняя история алгебры

Страница из Аль-Хорезми «ы ал-Китаб ал-Мухтасар Ф.И. Хисаб аль-Gabr ва-л-мукабаля

Корни алгебры можно проследить до древних вавилонян , [9] , который разработал передовую арифметическую систему , с которой они были в состоянии выполнять вычисления в алгоритмической форме. Вавилоняне разработали формулы для вычисления решений проблем, которые сегодня обычно решаются с помощью линейных уравнений , квадратных уравнений и неопределенных линейных уравнений . Напротив, большинство египтян этой эпохи, а также греческие и китайские математики в 1-м тысячелетии до нашей эры обычно решали такие уравнения геометрическими методами, такими как те, которые описаны в Математическом папирусе Райнда ,Евклид Элементы и Математики в девяти книгах . Геометрические работы греков, представленные в Элементах , обеспечивали основу для обобщения формул, выходящих за рамки решения конкретных проблем, в более общие системы формулирования и решения уравнений, хотя это не могло быть реализовано до тех пор, пока математика не разовьется в средневековом исламе . [10]

Ко времени Платона греческая математика претерпела коренные изменения. Греки создали геометрическую алгебру, в которой термины были представлены сторонами геометрических объектов, обычно линиями, с которыми были связаны буквы. [5] Диофант (3 век нашей эры) был александрийским греческим математиком и автором серии книг под названием « Арифметика» . Эти тексты иметь дело с решением алгебраических уравнений , [11] и привели, в теории чисел , к современному понятию диофантово уравнение .

Ранее рассмотренные выше традиции оказали прямое влияние на персидского математика Мухаммада ибн Муса аль-Хваризми (ок. 780–850). Позже он написал Сборную книгу по расчетам путем завершения и уравновешивания , в которой алгебра была признана математической дисциплиной, независимой от геометрии и арифметики . [12]

Эллинистической математиков Герон Александрийский и Диофанта [13] , а также индийских математиков , таких как Брахмагупты , продолжил традиции Египта и Вавилона, хотя Диофант Арифметика и Брахмагупты Brāhmasphuṭasiddhānta находятся на более высоком уровне. [14] [ нужен лучший источник ] Например, первое полное арифметическое решение, записанное словами вместо символов [15], включая нулевые и отрицательные решения, квадратных уравнений, было описано Брахмагуптой в его книге Brahmasphutasiddhanta, опубликованной в 628 году нашей эры. [16]Позже персидские и арабские математики развили алгебраические методы до гораздо более высокой степени сложности. Хотя Диофант и вавилоняне использовали в основном специальные специальные методы для решения уравнений, вклад Аль-Хорезми был фундаментальным. Он решил линейные и квадратные уравнения без алгебраической символики, отрицательных чисел или нуля , поэтому ему пришлось различать несколько типов уравнений. [17]

В контексте, где алгебра отождествляется с теорией уравнений , греческий математик Диофант традиционно был известен как «отец алгебры», а в контексте, где она отождествляется с правилами манипулирования и решения уравнений, персидский математик аль-Хорезми является считается «отцом алгебры». [18] [19] [20] [21] [22] [23] [24] В настоящее время ведутся споры о том, кто (в общем смысле) имеет больше прав называться «отцом алгебры». Сторонники Диофанта указывают на тот факт, что алгебра, найденная в Аль-Джабре , немного более элементарна, чем алгебра, найденная в Арифметике и этой Арифметике.синкопировано, в то время как Аль-Джабр полностью риторический. [25] Сторонники Аль-Хорезми указывают на тот факт, что он ввел методы « редукции » и «уравновешивания» (перенос вычитаемых членов на другую сторону уравнения, то есть отмену одинаковых членов на противоположных сторонах). стороны уравнения), к которому первоначально относился термин аль-джабр [26], и что он дал исчерпывающее объяснение решения квадратных уравнений [27], подкрепленное геометрическими доказательствами, при этом рассматривая алгебру как самостоятельную дисциплину. [22] Его алгебра также больше не была озабочена «рядом проблем, которые нужно было решить, ноизложение, которое начинается с примитивных терминов, в которых комбинации должны давать все возможные прототипы для уравнений, которые отныне явным образом составляют истинный объект исследования ". Он также изучал уравнение само по себе и" в общем виде, поскольку оно не просто возникают в процессе решения проблемы, но специально призваны определять бесконечный класс проблем » [28].

Другой персидский математик Омар Хайям приписывают определение основ алгебраической геометрии и нашел общее геометрическое решение кубического уравнения . Его книга « Трактат о демонстрации проблем алгебры» (1070 г.), в которой изложены принципы алгебры, является частью персидской математики, которая в конечном итоге была передана в Европу. [29] Еще один персидский математик, Шараф ад-Дин ат-Туси , нашел алгебраические и численные решения различных случаев кубических уравнений. [30] Он также разработал концепцию функции . [31] Индийские математики Махавираи Бхаскара II , персидский математик Аль-Караджа , [32] и китайский математик Чж Шицз , решал различные случаи кубических, квартик , квинтик и высших порядки полиномиальных уравнений с использованием численных методов. В 13 веке решение кубического уравнения Фибоначчи представляет собой начало возрождения европейской алгебры. Абу аль-Хасан ибн Али аль-Каладади (1412–1486) сделал «первые шаги к введению алгебраической символики». Он также вычислил ∑ n 2 , ∑ n 3и использовал метод последовательного приближения для определения квадратных корней. [33]

Современная история алгебры

Итальянский математик Джироламо Кардано опубликовал решения уравнений кубической и четвертой степени в своей книге 1545 года Ars magna .

Работа Франсуа Виэта по новой алгебре в конце XVI века была важным шагом на пути к современной алгебре. В 1637 году Рене Декарт опубликовал « Геометрию» , в которой изобрел аналитическую геометрию и ввел современные алгебраические обозначения. Другим ключевым событием в дальнейшем развитии алгебры стало общее алгебраическое решение кубических и квартичных уравнений, разработанное в середине 16 века. Идея определителя была развита японским математиком Секи Коува в 17 веке, а десять лет спустя независимо от него последовал Готфрид Лейбниц с целью решения систем одновременных линейных уравнений с использованиемматрицы . Габриэль Крамер также работал над матрицами и детерминантами в 18 веке. Перестановки были изучены Жозефом-Луи Лагранжем в его статье 1770 года « Рефлексии на алгебраическое решение уравнений », посвященной решениям алгебраических уравнений, в которой он ввел резольвенты Лагранжа . Паоло Руффини был первым, кто разработал теорию групп перестановок , и, как и его предшественники, также в контексте решения алгебраических уравнений.

Абстрактная алгебра была разработана в 19 веке из-за интереса к решению уравнений, первоначально сосредоточившись на том, что сейчас называется теорией Галуа , и на вопросах конструктивности . [34] Джордж Пикок был основателем аксиоматического мышления в арифметике и алгебре. Август де Морган открыл алгебру отношений в своей программе предложенной системы логики . Джозия Уиллард Гиббс разработал алгебру векторов в трехмерном пространстве, а Артур Кэли разработал алгебру матриц (это некоммутативная алгебра). [35]

Области математики, в названии которых есть слово алгебра

Некоторые области математики, подпадающие под классификационную абстрактную алгебру, имеют в названии слово «алгебра»; линейная алгебра - один из примеров. Другие этого не делают: теория групп , теории колец и теории поля являются примерами. В этом разделе мы перечисляем некоторые области математики со словом «алгебра» в названии.

  • Элементарная алгебра , часть алгебры, которая обычно преподается на элементарных курсах математики.
  • Абстрактная алгебра , в которой алгебраические структуры , такие как группы , колец и полей являются аксиоматически определены и исследованы.
  • Линейная алгебра , в которой изучаются специфические свойства линейных уравнений , векторных пространств и матриц .
  • Булева алгебра , ветвь алгебры, абстрагирующая вычисления с истинными значениями false и true .
  • Коммутативная алгебра , изучение коммутативных колец .
  • Компьютерная алгебра , реализация алгебраических методов в виде алгоритмов и компьютерных программ .
  • Гомологическая алгебра , изучение алгебраических структур, которые имеют фундаментальное значение для изучения топологических пространств .
  • Универсальная алгебра , в которой изучаются свойства, общие для всех алгебраических структур.
  • Алгебраическая теория чисел , в которой свойства чисел изучаются с алгебраической точки зрения.
  • Алгебраическая геометрия , ветвь геометрии, в ее примитивной форме, определяющая кривые и поверхности как решения полиномиальных уравнений.
  • Алгебраическая комбинаторика , в которой алгебраические методы используются для изучения комбинаторных вопросов.
  • Реляционная алгебра : набор конечных отношений , замкнутый относительно определенных операторов.

Многие математические структуры называются алгебрами :

  • Алгебра над полем или, в более общем смысле, алгебра над кольцом .
    Многие классы алгебр над полем или над кольцом имеют определенное имя:
    • Ассоциативная алгебра
    • Неассоциативная алгебра
    • Алгебра Ли
    • Алгебра Хопфа
    • C * -алгебра
    • Симметричная алгебра
    • Внешняя алгебра
    • Тензорная алгебра
  • В теории меры ,
    • Сигма-алгебра
    • Алгебра над множеством
  • В теории категорий
    • F-алгебра и F-коалгебра
    • Т-алгебра
  • В логике ,
    • Алгебра отношений , булева алгебра с делениями, расширенная инволюцией, называемой обратной.
    • Булева алгебра , дополненная дистрибутивная решетка .
    • Алгебра Гейтинга

Элементарная алгебра

Обозначения алгебраических выражений:
  1 - степень (показатель степени)
  2 - коэффициент
  3 - член
  4 - оператор
  5 - постоянный член
  x y c - переменные / константы

Элементарная алгебра - это самая основная форма алгебры. Его преподают учащимся, которые, как предполагается, не имеют никаких знаний по математике, кроме основных принципов арифметики . В арифметике используются только числа и их арифметические операции (например, +, -, ×, ÷). В алгебре числа часто представлены символами, называемыми переменными (такими как a , n , x , y или z ). Это полезно, потому что:

  • Он позволяет сформулировать общие арифметические законы (например, a + b = b + a для всех a и b ) и, таким образом, является первым шагом к систематическому исследованию свойств действительной системы счисления .
  • Это позволяет ссылаться на «неизвестные» числа, формулировать уравнения и изучать способы их решения. (Например, «Найдите число x такое, что 3 x + 1 = 10» или, идя немного дальше, «Найдите число x такое, что ax + b = c ». Этот шаг приводит к выводу, что это не природа конкретные числа, которые позволяют нам решить эту проблему, но число задействованных операций.)
  • Это позволяет формулировать функциональные отношения. (Например, «Если вы продаете x билетов, то ваша прибыль составит 3 x - 10 долларов, или f ( x ) = 3 x - 10, где f - функция, а x - число, к которому функция применяется. ".)

Полиномы

График полинома функции степени 3

Полином является выражением , что является суммой конечного числа ненулевых терминов , каждый термин , состоящим из продукта постоянная и конечного числа переменных , заданных для целых чисел полномочий. Например, x 2 + 2 x - 3 является многочленом от единственной переменной x . Полиномиальное выражение является выражением , которое может быть переписано в виде полинома, используя коммутативности, ассоциативности и дистрибутивности сложения и умножения. Например, ( x - 1) ( x + 3) - это полиномиальное выражение, которое, собственно говоря, не является полиномом. Полиномиальная функция- функция, которая определяется полиномом или, что эквивалентно, полиномиальным выражением. Два предыдущих примера определяют одну и ту же полиномиальную функцию.

Двумя важными и связанными проблемами в алгебре являются факторизация многочленов , то есть выражение данного многочлена как произведение других многочленов, которые не могут быть разложены на множители , и вычисление наибольших общих делителей многочлена . Пример полинома выше можно разложить на множители как ( x - 1) ( x + 3). Связанный с этим класс задач - это поиск алгебраических выражений для корней многочлена от одной переменной.

Образование

Было высказано предположение, что элементарная алгебра должна преподаваться ученикам в возрасте от одиннадцати лет [36], хотя в последние годы в Соединенных Штатах чаще публичные уроки начинаются на уровне восьмого класса (≈ 13 лет ±). . [37] Однако в некоторых школах США алгебру изучают в девятом классе.

Абстрактная алгебра

Абстрактная алгебра расширяет привычные понятия , найденные в элементарной алгебре и арифметическая из числа более общих понятий. Вот перечисленные основные понятия абстрактной алгебры.

Множества : вместо того, чтобы просто рассматривать различные типы чисел , абстрактная алгебра имеет дело с более общей концепцией множеств : совокупность всех объектов (называемых элементами ), выбранных по свойству, специфичному для набора. Все наборы знакомых типов чисел являются наборами. Другие примеры наборов включают набор всех матриц два на два, набор всех многочленов второй степени( ax 2 + bx + c ), набор всех двумерных векторов на плоскости и различные конечные группы, такие как как циклические группы, которые представляют собой группы целых чисел по модулю n . Теория множеств - это раздел логики, а не алгебры.

Бинарные операции : понятие сложения (+) абстрагируется, чтобы дать бинарную операцию , скажем *. Понятие двоичной операции бессмысленно без набора, на котором операция определена. Для двух элементов a и b в множестве S , a b - другой элемент в множестве; это состояние называется закрытием . Сложение (+), вычитание (-), умножение (×) и деление (÷) могут быть двоичными операциями, если они определены на разных наборах, как и сложение и умножение матриц, векторов и многочленов.

Элементы идентичности : числа ноль и один абстрагируются, чтобы дать понятие элемента идентичности для операции. Ноль - это единичный элемент для сложения, а единица - это единичный элемент для умножения. Для общего бинарного оператора ∗ единичный элемент e должен удовлетворять условию a e = a и e a = a и обязательно должен быть единственным, если он существует. Это верно для сложения как a + 0 = a и 0 + a = a и умножения a × 1 = a и 1 × a =а . Не все наборы и комбинации операторов имеют элемент идентичности; например, набор положительных натуральных чисел (1, 2, 3, ...) не имеет единичного элемента для сложения.

Обратные элементы : отрицательные числа дают начало концепции обратных элементов . Для сложения обратное значение записывается как - a , а для умножения - как −1 . Общий двусторонний обратный элемент a −1 удовлетворяет тому свойству, что a a −1 = e и a −1 a = e , где e - единичный элемент.

Ассоциативность : сложение целых чисел имеет свойство, называемое ассоциативностью. То есть группировка добавляемых чисел не влияет на сумму. Например: (2 + 3) + 4 = 2 + (3 + 4) . В общем случае это становится ( a b ) ∗ c = a ∗ ( b c ). Это свойство характерно для большинства бинарных операций, но не для вычитания, деления или умножения на октонион .

Коммутативность : сложение и умножение действительных чисел коммутативны. То есть порядок номеров не влияет на результат. Например: 2 + 3 = 3 + 2. В общем, это становится a b = b a . Это свойство сохраняется не для всех бинарных операций. Например, умножение матрицы и умножение кватернионов являются некоммутативным.

Группы

Объединение вышеуказанных концепций дает одну из самых важных структур в математике: группу . Группа - это комбинация множества S и одной бинарной операции ∗, определяемая любым способом по вашему выбору, но со следующими свойствами:

  • Единичный элемент е существует, таким образом, что для каждого члена а из S , е * и а * е оба идентичны .
  • Каждый элемент имеет обратный: для каждого элемента a из S существует элемент a −1 такой, что aa −1 и a −1a оба идентичны единичному элементу.
  • Операция ассоциативна: если a , b и c являются членами S , то ( ab ) ∗ c идентично a ∗ ( bc ).

Если группа также коммутативна, то есть для любых двух членов a и b группы S , ab идентично ba, то группа называется абелевой .

Например, набор целых чисел при операции сложения - это группа. В этой группе единичным элементом является 0, а обратным любому элементу a является его отрицание, - a . Требование ассоциативности выполняется, потому что для любых целых чисел a , b и c ( a + b ) + c = a + ( b + c )

Ненулевые рациональные числа образуют группу при умножении. Здесь единичный элемент равен 1, поскольку 1 × a = a × 1 = a для любого рационального числа a . Обратное к a равно 1 / a , поскольку a × 1 / a = 1.

Однако целые числа при операции умножения не образуют группу. Это потому, что, как правило, мультипликативная обратная величина целого числа не является целым числом. Например, 4 - это целое число, но его мультипликативная обратная величина -, которая не является целым числом.

Теория групп изучается в теории групп . Основным результатом этой теории является классификация конечных простых групп , опубликованная в основном между 1955 и 1983 годами, которая разделяет конечные простые группы примерно на 30 основных типов.

Полугруппы , квазигруппы и моноиды имеют структуру, аналогичную группам, но более общую. Они состоят из набора и закрытой бинарной операции, но не обязательно удовлетворяют другим условиям. Пол-группа имеет ассоциативную бинарную операцию , но не может иметь единичный элемент. Моноид является пол-группой , которая действительно имеет идентичность , но не может иметь обратный для каждого элемента. А квази-группа удовлетворяет требование , что любой элемент может быть превращен в любой другой либо уникальным левым умножением или правого умножения; однако двоичная операция может быть не ассоциативной.

Все группы являются моноидами, а все моноиды - полугруппами.

Кольца и поля

У групп всего одна бинарная операция. Чтобы полностью объяснить поведение различных типов чисел, необходимо изучить структуры с двумя операторами. Наиболее важные из них - кольца и поля .

Кольцо имеет две бинарных операций (+) и (х), с × распределительным над +. Под действием первого оператора (+) она образует абелеву группу . Под вторым оператором (×) он ассоциативен, но не должен иметь тождества или обратного, поэтому деление не требуется. Аддитивный (+) единичный элемент записывается как 0, а аддитивный обратный элемент a записывается как - a .

Распределительность обобщает закон распределения чисел. Для целых чисел ( a + b ) × c = a × c + b × c и c × ( a + b ) = c × a + c × b , и × называется дистрибутивным над +.

Целые числа являются примером кольца. У целых чисел есть дополнительные свойства, которые делают их целостной областью .

Поле представляет собой кольцо с дополнительным свойством , что все элементы , исключая 0 , образуют абелеву группу под ×. Мультипликативное (×) тождество записывается как 1, а мультипликативное обратное к a записывается как a −1 .

Рациональные числа, действительные числа и комплексные числа - все это примеры полей.

Смотрите также

  • Схема алгебры
  • Очерк линейной алгебры
  • Алгебра плитка

Рекомендации

Цитаты

  1. ^ «алгебра» . Оксфордский словарь английского языка . Издательство Оксфордского университета. Архивировано 31 декабря 2013 года . Проверено 20 ноября 2013 .
  2. ^ Менини, Клаудиа; Ойстэйен, Фредди Ван (22.11.2017). Абстрактная алгебра: комплексное лечение . CRC Press. ISBN 978-1-4822-5817-2. Архивировано 21 февраля 2021 года . Проверено 15 октября 2020 .
  3. ^ См. Herstein 1964 , стр. 1: «Алгебраическая система может быть описана как набор объектов вместе с некоторыми операциями по их объединению».
  4. ^ См. Herstein 1964 , стр. 1: «... он также служит объединяющей нитью, которая переплетает почти всю математику».
  5. ^ a b c См. Boyer 1991 , Европа в средние века , стр. 258: «В арифметических теоремах в« Элементах VII – IX » Евклида числа были представлены отрезками линии, к которым были прикреплены буквы, а геометрические доказательства в Алгебре аль-Хорезми использовали буквенные диаграммы; но все коэффициенты в уравнениях использовались в алгебре есть конкретные числа, представленные цифрами или записанные словами. Идея общности подразумевается в изложении аль-Хорезми, но у него не было схемы для алгебраического выражения общих положений, которые так легко доступны в геометрии ".
  6. ^ Эспозито, Джон Л. (2000-04-06). Оксфордская история ислама . Издательство Оксфордского университета. п. 188. ISBN 978-0-19-988041-6 . 
  7. ^ TF Hoad, изд. (2003). «Алгебра» . Краткий Оксфордский словарь английской этимологии . Оксфорд: Издательство Оксфордского университета. DOI : 10.1093 / acref / 9780192830982.001.0001 . ISBN 978-0-19-283098-2.
  8. ^ "2010 Классификация предметов по математике" . Архивировано 06.06.2014 . Проверено 5 октября 2014 .
  9. ^ Струик, Дирк Дж (1987). Краткая история математики . Нью-Йорк: Dover Publications. ISBN 978-0-486-60255-4.
  10. См. Boyer 1991 .
  11. ^ Cajori, Флориан (2010). История элементарной математики - с подсказками о методах преподавания . п. 34. ISBN 978-1-4460-2221-4. Архивировано 21 февраля 2021 года . Проверено 15 октября 2020 .
  12. ^ Рошди Рашед (ноябрь 2009). Аль Хорезми: Начало алгебры . Saqi Книги. ISBN 978-0-86356-430-7.
  13. ^ "Диофант, отец алгебры" . Архивировано из оригинала на 2013-07-27 . Проверено 5 октября 2014 .
  14. ^ "История алгебры" . Архивировано 11 ноября 2014 года . Проверено 5 октября 2014 .
  15. ^ Маккензи, Дана. Вселенная в нулевых словах: история математики, рассказанная через уравнения , с. 61 (Princeton University Press, 2012).
  16. ^ Брэдли, Майкл. Рождение математики: древние времена до 1300 г. , стр. 86 (Издательство Infobase Publishing 2006).
  17. ^ Мери, Йозеф В. (2004). Средневековая исламская цивилизация . Психология Press. п. 31. ISBN 978-0-415-96690-0. Архивировано 2 июня 2013 года . Проверено 25 ноября 2012 .
  18. Корона, Брезина (8 февраля 2006 г.). Аль-Хорезми: изобретатель алгебры . Нью-Йорк, США: Rosen Pub Group. ISBN 978-1404205130.
  19. ^ См. Boyer 1991 , стр. 181: «Если мы думаем в первую очередь о нотациях, Диофант имеет все основания претендовать на звание« отца алгебры », но с точки зрения мотивации и концепции это утверждение менее уместно. Арифметика не является систематическим изложением алгебраических операций, алгебраических функций или решения алгебраических уравнений ».
  20. ^ См. Boyer 1991 , стр. 230: «Шесть случаев приведенных выше уравнений исчерпывают все возможности для линейных и квадратных уравнений ... В этом смысле аль-Хорезми имеет право называться« отцом алгебры »».
  21. См. Бойер 1991 , стр. 228: «Диофанта иногда называют отцом алгебры, но этот титул более уместно принадлежит аль-Ховаризми».
  22. ^ a b См. Gandz 1936 , стр. 263–277: «В некотором смысле аль-Хорезми имеет больше прав называться« отцом алгебры », чем Диофант, потому что аль-Хорезми первым преподает алгебру в элементарной форме и для Само по себе Диофант в первую очередь занимается теорией чисел ».
  23. ^ Кристианидис, Жан (август 2007 г.). «Путь Диофанта: некоторые пояснения к методу решения Диофанта». Historia Mathematica . 34 (3): 289–305. DOI : 10.1016 / j.hm.2006.10.003 . Верно, что если исходить из концепции алгебры, которая подчеркивает решение уравнений, как это обычно было с арабскими математиками от аль-Хваризми и далее, а также с итальянскими алгебраистами эпохи Возрождения, то работа Диофанта представляется действительно очень отличается от работ тех алгебраистов
  24. ^ Cifoletti, GC (1995). "La question de l'algèbre: Mathématiques et rhétorique des homes de droit dans la France du 16e siècle". Annales de l'École des Hautes Études en Sciences Sociales, 50 (6) : 1385–1416. Le travail des Arabes et de leurs sucesseurs a privilégié la solution des problèmes. Арифметика диофантина о частной теории уравнений
  25. См. Boyer 1991 , стр. 228.
  26. См. Бойер 1991 , Арабская гегемония , стр. 229: «Не совсем ясно, чтоозначаюттермины аль-джабр и мукабала , но обычное толкование аналогично тому, что подразумевается в переводе выше. Слово аль-джабр предположительно означало что-то вроде« восстановление »или« завершение »и кажется для обозначения переноса вычтенных членов на другую сторону уравнения; слово muqabalah, как говорят, относится к «сокращению» или «уравновешиванию», то есть отмене одинаковых членов на противоположных сторонах уравнения ».
  27. См. Бойер 1991 , Арабская гегемония , стр. 230: «Приведенные выше шесть случаев уравнений исчерпывают все возможности линейных и квадратных уравнений, имеющих положительный корень. Изложение аль-Хорезми было настолько систематическим и исчерпывающим, что его читатели, должно быть, не испытывали особых трудностей в освоении решений».
  28. ^ Rashed, R .; Армстронг, Анджела (1994). Развитие арабской математики . Springer . С. 11–12. ISBN 978-0-7923-2565-9. OCLC  29181926 .
  29. ^ Математические шедевры: Дальнейшие хроники исследователей . п. 92.
  30. ^ О'Коннор, Джон Дж .; Робертсон, Эдмунд Ф. , "Шараф ад-Дин аль-Музаффар аль-Туси" , архив истории математики MacTutor , Университет Сент-Эндрюс.
  31. ^ Виктор Дж. Кац, Билл Бартон; Бартон, Билл (октябрь 2007 г.). «Этапы истории алгебры с последствиями для обучения». Образовательные исследования по математике . 66 (2): 185–201 [192]. DOI : 10.1007 / s10649-006-9023-7 . S2CID 120363574 . 
  32. См. Бойер 1991 , Арабская гегемония , стр. 239: «Абу'л Вефа был способным алгебраистом, а также тригонометром. ... Его преемник аль-Кархи, очевидно, использовал этот перевод, чтобы стать арабским учеником Диофанта - но без диофантового анализа! ... В частности, аль-Кархи. -Кархи приписывается первое численное решение уравнений вида ax 2n + bx n = c (рассматривались только уравнения с положительными корнями), "
  33. ^ "Биография Аль-Каласади" . www-history.mcs.st-andrews.ac.uk . Архивировано 26 октября 2019 года . Проверено 17 октября 2017 .
  34. ^ « Истоки абстрактной алгебры Архивированных 2010-06-11 на Wayback Machine ». Математический факультет Гавайского университета.
  35. ^ « Сборник математических статей ». Издательство Кембриджского университета.
  36. ^ "Алгебра Халла" (PDF) . Нью-Йорк Таймс . 16 июля 1904 г. Архивировано 21 февраля 2021 года (PDF) . Проверено 21 сентября 2012 .
  37. Куэйд, Либби (22 сентября 2008 г.). «Дети неуместны в алгебре» (Отчет) . Ассошиэйтед Пресс . Архивировано 27 октября 2011 года . Проверено 23 сентября 2012 .

Процитированные работы

  • Бойер, Карл Б. (1991). История математики (2-е изд.). Джон Вили и сыновья. ISBN 978-0-471-54397-8.
  • Гандз, С. (январь 1936 г.). «Источники алгебры Аль-Ховаризми». Осирис . 1 : 263–277. DOI : 10.1086 / 368426 . JSTOR  301610 . S2CID  60770737 .
  • Герштейн, И. Н. (1964). Темы по алгебре . Джинн и компания. ISBN 0-471-02371-X.

дальнейшее чтение

  • Алленби, RBJT (1991). Кольца, поля и группы . ISBN 0-340-54440-6.
  • Азимов, Исаак (1961). Сфера алгебры . Хоутон Миффлин.
  • Эйлер, Леонард (ноябрь 2005 г.). Элементы алгебры . ISBN 978-1-899618-73-6. Архивировано из оригинала на 2011-04-13.
  • Герштейн, IN (1975). Темы по алгебре . ISBN 0-471-02371-X.
  • Хилл, Дональд Р. (1994). Исламская наука и инженерия . Издательство Эдинбургского университета.
  • Джозеф, Джордж Гевергезе (2000). Гребень павлина: неевропейские корни математики . Книги пингвинов .
  • О'Коннор, Джон Дж .; Робертсон, Эдмунд Ф. (2005). «Темы истории: указатель алгебры» . Архив истории математики MacTutor . Сент-Эндрюсский университет . Архивировано из оригинала на 2016-03-03 . Проверено 10 декабря 2011 .
  • Сардар, Зиауддин; Равец, Джерри; Loon, Борин Ван (1999). Введение в математику . Тотемные книги.

внешняя ссылка

  • Khan Academy: концептуальные видео и рабочие примеры
  • Khan Academy: Origins of Algebra, бесплатные микролекции онлайн
  • Algebrarules.com: ресурс с открытым исходным кодом для изучения основ алгебры.
  • «4000 лет алгебры» , лекция Робина Уилсона, в Грешем-колледже , 17 октября 2007 г. (доступно для скачивания в форматах MP3 и MP4, а также в виде текстового файла).
  • Пратт, Воган. «Алгебра» . В Залте, Эдвард Н. (ред.). Стэнфордская энциклопедия философии .