Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску
Пентозофосфатный путь

Пентозофосфатный (также называемый фосфоглюконат пути и гексозы монофосфат шунта ) представляет собой метаболический путь параллельно гликолиза . [1] Он генерирует НАДФН и пентозы (5- углеродные сахара ), а также рибозо-5-фосфат , предшественник для синтеза нуклеотидов . [2] Хотя пентозофосфатный путь действительно включает окисление глюкозы , его основная роль - анаболическая, а не катаболическая.. Этот путь особенно важен в красных кровяных тельцах (эритроцитах).

На этом пути есть две отдельные фазы. Первая - это окислительная фаза, в которой вырабатывается НАДФН, а вторая - неокислительный синтез 5-углеродных сахаров. Для большинства организмов пентозофосфатный путь проходит в цитозоле ; у растений большинство стадий происходит в пластидах . [3]

Подобно гликолизу , пентозофосфатный путь, по-видимому, имеет очень древнее эволюционное происхождение. Реакции этого пути в современных клетках в основном катализируются ферментами, однако они также протекают неферментативно в условиях, которые повторяют те, что в архейском океане, и катализируются ионами металлов , особенно ионами двухвалентного железа (Fe (II)). [4] Это говорит о том, что происхождение этого пути могло восходить к миру пребиотиков.

Результат [ править ]

Основными результатами пути являются:

Ароматические аминокислоты, в свою очередь, являются предшественниками многих биосинтетических путей, включая лигнин в древесине. [ необходима цитата ]

Пищевые пентозные сахара, полученные в результате переваривания нуклеиновых кислот, могут метаболизироваться через пентозофосфатный путь, а углеродные скелеты пищевых углеводов могут быть преобразованы в гликолитические / глюконеогенные промежуточные продукты.

У млекопитающих PPP находится исключительно в цитоплазме. У людей он наиболее активен в печени, молочных железах и коре надпочечников. [ необходима цитата ] PPP - один из трех основных способов, которыми организм создает молекулы с уменьшающейся мощностью, на которые приходится примерно 60% производства НАДФН в организме человека. [ необходима цитата ]

Одно из применений НАДФН в клетке - предотвращение окислительного стресса . Он восстанавливает глутатион с помощью глутатионредуктазы , которая превращает реактивную H 2 O 2 в H 2 O с помощью глутатионпероксидазы . Если его нет, H 2 O 2 будет преобразован в свободные гидроксильные радикалы с помощью химии Фентона , которые могут атаковать клетку. Эритроциты, например, генерируют большое количество НАДФН через пентозофосфатный путь, чтобы использовать его для восстановления глутатиона.

Перекись водорода также вырабатывается фагоцитами в процессе, который часто называют респираторным взрывом . [5]

Фазы [ править ]

Окислительная фаза [ править ]

На этой фазе две молекулы НАДФ + восстанавливаются до НАДФН , используя энергию преобразования глюкозо-6-фосфата в рибулозо-5-фосфат .

Окислительная фаза пентозофосфатного пути.
Глюкозо-6-фосфат ( 1 ), 6-фосфоглюконо-δ-лактон ( 2 ), 6-фосфоглюконат ( 3 ), рибулозо-5-фосфат ( 4 )

Весь набор реакций можно резюмировать следующим образом:

Общая реакция на этот процесс:

Глюкозо-6-фосфат + 2 НАДФ + + H 2 O → рибулозо-5-фосфат + 2 НАДФН + 2 H + + CO 2

Неокислительная фаза [ править ]

Неокислительная фаза пентозофосфатного пути

Чистая реакция: 3 рибулозо-5-фосфат → 1 рибозо-5-фосфат + 2 ксилулозо-5-фосфат → 2 фруктозо-6-фосфат + глицеральдегид-3-фосфат.

Регламент [ править ]

Глюкозо-6-фосфатдегидрогеназа является ферментом, контролирующим скорость этого пути. Он аллостерически стимулируется НАДФ + и сильно ингибируется НАДФН . [6] Соотношение НАДФН: НАДФ + обычно составляет около 100: 1 в цитозоле печени [ необходима цитата ] . Это делает цитозоль сильно восстанавливающей средой. Путь, использующий НАДФН, образует НАДФ + , который стимулирует глюкозо-6-фосфатдегидрогеназу производить больше НАДФН. Этот шаг также ингибируется ацетил-КоА . [ необходима цитата ]

Активность G6PD также посттрансляционно регулируется цитоплазматической деацетилазой SIRT2 . SIRT2-опосредованное деацетилирование и активация G6PD стимулирует окислительную ветвь PPP для снабжения цитозольного NADPH для противодействия окислительному повреждению или поддержки липогенеза de novo . [7] [8]

Эритроциты [ править ]

Было обнаружено, что некоторые нарушения уровня активности (не функции) глюкозо-6-фосфатдегидрогеназы связаны с устойчивостью к малярийному паразиту Plasmodium falciparum у лиц средиземноморского и африканского происхождения. Основанием для этого сопротивления может быть ослабление мембраны эритроцитов (эритроцит является клеткой-хозяином для паразита), так что он не может поддерживать жизненный цикл паразита достаточно долго для продуктивного роста. [9]

См. Также [ править ]

  • Дефицит G6PD - наследственное заболевание, нарушающее пентозофосфатный путь.
  • РНК
  • Дефицит тиамина
  • Фрэнк Диккенс, ФРС

Ссылки [ править ]

  1. ^ Alfarouk, Халид O .; Ахмед, Самрейн Б.М.; Эллиотт, Роберт Л .; Бенуа, Аманда; Alqahtani, Saad S .; Ибрагим, Мунтасер Э .; Башир, Адиль Х.Х .; Алхуфи, Сари Т.С.; Elhassan, Gamal O .; Уэльс, Кристиан К .; Schwartz, Laurent H .; Али, Heyam S .; Ахмед, Ахмед; Форд, Патрик Ф .; Девеша, Иисус; Cardone, Rosa A .; Фаис, Стефано; Харгинди, Сальвадор; Решкин, Стефан Дж. (2020). «Динамика пентозофосфатного пути при раке и его зависимость от внутриклеточного pH» . Метаболиты . 10 (7): 285. DOI : 10,3390 / metabo10070285 .
  2. ^ Alfarouk, Халид O .; Ахмед, Самрейн Б.М.; Эллиотт, Роберт Л .; Бенуа, Аманда; Alqahtani, Saad S .; Ибрагим, Мунтасер Э .; Башир, Адиль Х.Х .; Алхуфи, Сари Т.С.; Elhassan, Gamal O .; Уэльс, Кристиан К .; Schwartz, Laurent H .; Али, Heyam S .; Ахмед, Ахмед; Форд, Патрик Ф .; Девеша, Иисус; Cardone, Rosa A .; Фаис, Стефано; Харгинди, Сальвадор; Решкин, Стефан Дж. (2020). «Динамика пентозофосфатного пути при раке и его зависимость от внутриклеточного pH» . Метаболиты . 10 (7): 285. DOI : 10,3390 / metabo10070285 .
  3. ^ Крюгер, Николас J; фон Шаевен, Антье (июнь 2003 г.). «Окислительный пентозофосфатный путь: структура и организация». Текущее мнение в биологии растений . 6 (3): 236–246. DOI : 10.1016 / S1369-5266 (03) 00039-6 . PMID 12753973 . 
  4. ^ Келлер, Маркус А .; Турчин, Александра В .; Ралсер, Маркус (25 апреля 2014 г.). «Неферментативный гликолиз и реакции, подобные пути пентозофосфата в вероятном архейском океане» . Молекулярная системная биология . 10 (4): 725. DOI : 10.1002 / msb.20145228 . PMC 4023395 . PMID 24771084 . Проверено 23 февраля 2015 года .  
  5. ^ Иммунология в MCG 1 / cytotox
  6. ^ Voet Дональд ; Воет Джудит Джи (2011). Биохимия (4-е изд.). п. 894. ISBN 978-0470-57095-1.
  7. Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, Yang C, Yang Y, Xiong Y, Guan KL, Ye D (июнь 2014 г.). «Регулирование ацетилирования G6PD с помощью SIRT2 и KAT9 модулирует гомеостаз NADPH и выживаемость клеток во время окислительного стресса» . EMBO Journal . 33 (12): 1304–20. DOI : 10.1002 / embj.201387224 . PMC 4194121 . PMID 24769394 .  
  8. ^ Xu SN, Wang TS, Li X, Wang YP (сентябрь 2016 г.). «SIRT2 активирует G6PD для увеличения продукции NADPH и способствует пролиферации лейкозных клеток» . Sci Rep . 6 : 32734. DOI : 10.1038 / srep32734 . PMC 5009355 . PMID 27586085 .  
  9. ^ Cappadoro M, Giribaldi G, O'Brien E, et al. (Октябрь 1998 г.). «Ранний фагоцитоз эритроцитов с дефицитом глюкозо-6-фосфатдегидрогеназы (G6PD), паразитированных Plasmodium falciparum, может объяснить защиту от малярии при дефиците G6PD» . Кровь . 92 (7): 2527–34. PMID 9746794 . Архивировано из оригинала на 2009-08-28 . Проверено 27 июня 2009 . 

Внешние ссылки [ править ]

  • Химическая логика пентозофосфатного пути
  • Pentose + Phosphate + Pathway в Национальной медицинской библиотеке США по медицинским предметным рубрикам (MeSH)
  • Карта пентозофосфатного пути - Homo sapiens