Из Википедии, бесплатной энциклопедии
  (Перенаправлен из " Решаемости" радикалами )
Перейти к навигации Перейти к поиску
Решетка подгрупп и подполей, показывающая соответствующие им группы Галуа.
К решеточной диаграмме поля Q примыкают положительные квадратные корни из 2 и 3, его подполя и группы Галуа.

В математике , теория Галуа , первоначально введенный Галуа , обеспечивает связь между теорией поля и теорией групп . Эта связь, основная теорема теории Галуа , позволяет свести к теории групп некоторые проблемы теории поля; это в некотором смысле упрощает их и позволяет лучше понять.

Галуа ввел предмет для изучения корней из многочленов . Это позволило ему охарактеризовать полиномиальные уравнения , которые разрешаются радикалами, с точки зрения свойств группы перестановок их корней - уравнение разрешимо с помощью радикалов, если его корни могут быть выражены формулой, включающей только целые числа , корни n- й степени и четыре основных арифметических операции . Это широко обобщает теорему Абеля – Руффини , которая утверждает, что общий многочлен степени не менее пяти не может быть решен с помощью радикалов.

Теория Галуа использовалась для решения классических проблем, включая демонстрацию того, что две проблемы древности не могут быть решены, как они были заявлены ( удвоение куба и деление угла на три части ), и характеристика правильных многоугольников, которые можно построить (эта характеристика была ранее дана Гауссом , но все известные доказательства полноты этой характеристики требуют теории Галуа).

Работа Галуа была опубликована через четырнадцать лет после его смерти Жозефом Лиувиллем . Теория потребовалось больше времени, чтобы стать популярной среди математиков и быть хорошо понятой.

Теория Галуа обобщена связей Галуа и теории Галуа Гротендика .

Приложение к классическим задачам [ править ]

Рождение и развитие теории Галуа было вызвано следующим вопросом, который был одним из основных открытых математических вопросов до начала 19 века:

Существует ли формула для корней полиномиального уравнения пятой (или более высокой) степени в терминах коэффициентов полинома, использующая только обычные алгебраические операции (сложение, вычитание, умножение, деление) и применение радикалов (квадратные корни, кубические корни и т. д.)?

Теорема Абеля – Руффини представляет собой контрпример, доказывающий, что существуют полиномиальные уравнения, для которых такая формула не может существовать. Теория Галуа дает гораздо более полный ответ на этот вопрос, объясняя , почему это является возможным решить некоторые уравнения, в том числе все те степени четыре или ниже, в указанном выше порядке, и почему это не представляется возможным для большинства уравнений пятой степени или выше. Кроме того, он обеспечивает средство определения возможности решения конкретного уравнения, которое является концептуально ясным и легко выражается в виде алгоритма .

Теория Галуа также дает ясное представление о вопросах, касающихся задач построения компаса и линейки . Он дает элегантную характеристику соотношений длин, которые могут быть построены с помощью этого метода. Используя это, становится относительно легко ответить на такие классические задачи геометрии, как

  1. Какие правильные многоугольники можно построить ? [1]
  2. Почему нельзя разрезать каждый угол пополам с помощью циркуля и линейки ? [1]
  3. Почему нельзя удвоить куб одним и тем же методом?

История [ править ]

Предистория [ править ]

Теория Галуа возникла при изучении симметричных функций - коэффициенты монического многочлена являются (с точностью до знака) элементарными симметричными многочленами в корнях. Например, ( x - a ) ( x - b ) = x 2 - ( a + b ) x + ab , где 1, a + b и ab - элементарные многочлены степени 0, 1 и 2 от двух переменных.

Впервые это было формализовано французским математиком XVI века Франсуа Виетом в формулах Вьета для случая положительных вещественных корней. По мнению 18- го века английского математика Чарльза Хаттона , [2] выражение коэффициентов полинома в терминах корней (не только для положительных корней) впервые было понято 17-го века французского математика Альберт Girard ; Хаттон пишет:

... [Жирар] был первым человеком, который понял общую доктрину образования коэффициентов степеней из суммы корней и их произведений. Он был первым, кто открыл правила суммирования степеней корней любого уравнения.

В этом ключе дискриминант является симметричной функцией в корнях, которая отражает свойства корней - он равен нулю тогда и только тогда, когда многочлен имеет кратный корень, а для квадратичных и кубических многочленов он положителен тогда и только тогда, когда все корни равны действительные и различные, и отрицательные тогда и только тогда, когда существует пара различных комплексно сопряженных корней. Подробнее см. Дискриминант: природа корней .

Кубика была впервые частично решена итальянским математиком 15–16 веков Сципионе дель Ферро , который, однако, не опубликовал свои результаты; этот метод, однако, решал только один тип кубического уравнения. Это решение было затем независимо открыто заново в 1535 году Никколо Фонтана Тарталья , который поделился им с Джероламо Кардано , попросив его не публиковать его. Затем Кардано распространил это на множество других случаев, используя аналогичные аргументы; подробнее см . метод Кардано . После открытия работы дель Ферро он почувствовал, что метод Тартальи больше не является секретом, и поэтому опубликовал свое решение в своей книге 1545 года Ars Magna . [3] Его ученик Лодовико Феррарирешил полином четвертой степени; его решение также было включено в Ars Magna. В этой книге, однако, Кардано не предоставил «общую формулу» для решения кубического уравнения, так как в его распоряжении не было ни комплексных чисел , ни алгебраических обозначений, позволяющих описать общее кубическое уравнение. Благодаря современным обозначениям и комплексным числам формулы в этой книге работают в общем случае, но Кардано этого не знал. Именно Рафаэлю Бомбелли удалось понять, как работать с комплексными числами, чтобы решать все формы кубического уравнения.

Следующим шагом был 1770 документ REFLEXIONS сюр ла Разрешение algébrique де УРАВНЕНИЙ по Французско-итальянский математик Жозеф Луи Лагранж в своем методе Лагранжа резольвентах , где анализируемый решение Кардано и Феррари в кубиках и квартик, рассматривая их с точки зрения перестановок из корни, которые дали вспомогательный многочлен более низкой степени, обеспечивающий единое понимание решений и закладывающий основу теории групп и теории Галуа. Однако принципиально то, что он не рассматривал композицию перестановок. Метод Лагранжа не распространяется на уравнения пятой степени и выше, поскольку резольвента имеет более высокую степень.

Паоло Руффини в 1799 году почти доказал, что у квинтики нет общих решений радикалов , ключевой идеей которого было использование групп перестановок , а не только одной перестановки. Его решение содержало пробел, который Коши считал незначительным, хотя он не был исправлен до работы норвежского математика Нильса Хенрика Абеля , который опубликовал доказательство в 1824 году, установив таким образом теорему Абеля – Руффини .

В то время как Руффини и Абель установили, что общая квинтика не может быть решена, некоторые частные квинтики могут быть решены, например, x 5 - 1 = 0 , и точный критерий, по которому данный многочлен пятой или более высокой степени может быть определен как разрешимый или нет. было дано Эваристом Галуа , который показал, что вопрос о том, разрешим ли многочлен или нет, эквивалентен тому, имеет ли группа перестановок его корней - в современных терминах, его группа Галуа - определенную структуру - в современных терминах, независимо от того, была разрешимая группа. Эта группа всегда была разрешима для многочленов четвертой или меньшей степени, но не всегда так для многочленов пятой и большей степени, что объясняет, почему не существует общего решения для более высоких степеней.

Произведения Галуа [ править ]

Портрет Эвариста Галуа, около 15 лет

В 1830 году Галуа (в возрасте 18 лет) представил Парижской академии наук мемуары о своей теории разрешимости радикалами; В 1831 году статья Галуа была окончательно отвергнута как слишком схематичная и дававшая условие в терминах корней уравнения, а не его коэффициентов. Затем Галуа умер на дуэли в 1832 году, и его статья « Mémoire sur les conditions de résolubilité des équations par radicaux » оставалась неопубликованной до 1846 года, когда она была опубликована Жозефом Лиувиллем вместе с некоторыми из его собственных объяснений. [4] Перед этой публикацией Лиувилль объявил результат Галуа Академии в речи, которую он произнес 4 июля 1843 года. [5]По словам Аллана Кларка, характеристика Галуа «кардинально заменяет работы Абеля и Руффини». [6]

Последствия [ править ]

Теория Галуа была общеизвестно трудной для понимания его современниками, особенно до того уровня, на котором они могли ее расширить. Например, в своем комментарии 1846 года Лиувилль полностью упустил теоретико-групповое ядро ​​метода Галуа. [7] Жозеф Альфред Серре , присутствовавший на некоторых выступлениях Лиувилля, включил теорию Галуа в свой учебник Cours d'algèbre supérieure 1866 года (третье издание) . Ученица Серре, Камилла Джордан , имела еще лучшее понимание, что отражено в его книге 1870 года Traité des replaces et des équations algébriques . За пределами Франции теория Галуа долгое время оставалась более неясной. В Великобритании Кэлине смогли понять ее глубины, и популярные британские учебники по алгебре даже не упоминали теорию Галуа до конца столетия. В Германии работы Кронекера были больше сосредоточены на результате Абеля. Дедекинд мало писал о теории Галуа, но читал лекции по ней в Геттингене в 1858 году, продемонстрировав очень хорошее понимание. [8] Eugen Нетто «книги с 1880 - х годов, на основе Джордана TRAITE , сделал теорию Галуа доступной для более широкой немецкой и американской аудитории , как сделал Генрих Мартин Вебер » s 1895 алгебра учебник. [9]

Подход группы перестановок [ править ]

Учитывая многочлен, может оказаться, что некоторые из корней связаны различными алгебраическими уравнениями . Например, может случиться так, что для двух корней, скажем, A и B , A 2 + 5 B 3 = 7 . Центральная идея теории Галуа состоит в том, чтобы рассмотреть перестановки (или перестановки) корней таким образом, чтобы любое алгебраическое уравнение, которому удовлетворяют корни, по- прежнему выполнялось после того, как корни были переставлены. Первоначально теория разрабатывалась для алгебраических уравнений, коэффициенты которых являются рациональными числами . Он естественным образом распространяется на уравнения с коэффициентами в любом поле, но это не будет рассматриваться в простых примерах ниже.

Эти перестановки вместе образуют группу перестановок , также называемую группой Галуа многочлена, которая явно описывается в следующих примерах.

Квадратное уравнение [ править ]

Рассмотрим квадратное уравнение

Используя квадратичную формулу , мы находим, что два корня равны

Примеры алгебраических уравнений, которым удовлетворяют A и B, включают

и

Если мы поменяем местами A и B в любом из последних двух уравнений, мы получим другое истинное утверждение. Например, уравнение A + B = 4 становится B + A = 4 . Это более общем верно , что это справедливо для каждого возможного алгебраического соотношения между А и В таким образом, что все коэффициенты являются рациональными ; то есть в любом таком отношении замена A и B дает другое истинное отношение. Это следует из теории симметричных многочленов, который в данном случае можно заменить манипуляциями с формулами с использованием биномиальной теоремы .

Можно возразить, что A и B связаны алгебраическим уравнением A - B - 2 3 = 0 , которое не остается верным, когда A и B меняются местами. Однако это соотношение здесь не рассматривается, поскольку оно имеет коэффициент −2 3, что нерационально .

Мы пришли к выводу о том , что группа Галуа многочлена х 2 - 4 х + 1 состоит из двух подстановки: идентичность перестановки , которая оставляет и Б нетронутыми, а транспонирование перестановки , которая обменивается A и B . Это циклическая группа второго порядка, и , следовательно , изоморфно к Z / 2 Z .

Аналогичное обсуждение применимо к любому квадратичному многочлену ax 2 + bx + c , где a , b и c - рациональные числа.

  • Если многочлен имеет рациональные корни, например x 2 - 4 x + 4 = ( x - 2) 2 или x 2 - 3 x + 2 = ( x - 2) ( x - 1) , то группа Галуа тривиальна ; то есть он содержит только тождественную перестановку. В этом примере, если = 2 и В = 1 , то - В = 1 уже не верно , когда являются Б меняются местами.
  • Если он имеет два иррациональных корня, например x 2 - 2 , то группа Галуа содержит две перестановки, как в приведенном выше примере.

Уравнение четвертой степени [ править ]

Рассмотрим многочлен

который также можно записать как

Мы хотим описать группу Галуа этого многочлена снова над полем рациональных чисел . У многочлена четыре корня:

Есть 24 возможных способа перестановки этих четырех корней, но не все эти перестановки являются членами группы Галуа. Члены группы Галуа должны сохранять любое алгебраическое уравнение с рациональными коэффициентами с участием A , B , C и D .

Среди этих уравнений:

Отсюда следует, что если φ - перестановка, принадлежащая группе Галуа, мы должны иметь:

Это означает, что перестановка корректно определяется образом A , и что группа Галуа имеет 4 элемента, а именно:

( A , B , C , D ) → ( A , B , C , D )
( A , B , C , D ) → ( B , A , D , C )
( A , B , C , D ) → ( C , D , A , B )
( A , B , C , D ) → ( D , C , B , A )

Отсюда следует, что группа Галуа изоморфна четырехгруппе Клейна .

Современный подход к теории поля [ править ]

В современном подходе один начинается с расширения полей L / K (читать « L над K »), и рассматривает группу автоморфизмов из L , фиксирующих K . См. Статью о группах Галуа для дальнейшего объяснения и примеров.

Связь между двумя подходами заключается в следующем. Коэффициенты полинома в вопросе должны быть выбраны из базы поля K . Верхнее поле L должно быть полем, полученным путем присоединения корней рассматриваемого многочлена к основному полю. Любая перестановка корней, которая уважает алгебраические уравнения, как описано выше, приводит к автоморфизму L / K , и наоборот.

В первом примере выше мы изучали расширение Q ( 3 ) / Q , где Q - поле рациональных чисел , а Q ( 3 ) - поле, полученное из Q присоединением 3 . Во втором примере, мы изучали расширение Q ( , B , C , D ) / Q .

У современного подхода есть несколько преимуществ перед подходом группы перестановок.

  • Он позволяет сформулировать гораздо более простую формулировку основной теоремы теории Галуа .
  • Использование других базовых полей, кроме Q, имеет решающее значение во многих областях математики. Например, в алгебраической теории чисел часто используют теорию Галуа, используя числовые поля , конечные поля или локальные поля в качестве основного поля.
  • Это позволяет легче изучать бесконечные расширения. Опять же это важно в алгебраической теории чисел, где, например , один часто обсуждает абсолютную Галуа группа из Q , определяется как группа Галуа K / Q , где К представляет собой алгебраическое замыкание из Q .
  • Это позволяет рассматривать неотделимые расширения . Эта проблема не возникает в классических рамках, поскольку всегда неявно предполагалось, что арифметика имеет место в нулевой характеристике , но ненулевая характеристика часто возникает в теории чисел и в алгебраической геометрии .
  • Это устраняет довольно искусственную зависимость от поиска корней многочленов. То есть разные полиномы могут давать одни и те же поля расширения, и современный подход признает связь между этими полиномами.

Разрешаемые группы и решение радикалами [ править ]

Понятие разрешимой группы в теории групп позволяет определить, разрешима ли многочлен в радикалах, в зависимости от того, обладает ли его группа Галуа свойством разрешимости. По сути, каждое расширение поля L / K соответствует фактор-группе в композиционном ряду группы Галуа. Если фактор-группа в композиционном ряду циклическая порядка n , и если в соответствующем расширении поля L / K поле K уже содержит примитивный корень n- й степени из единицы, То это радикальное расширение и элементы L , то могут быть выражены с помощью п - й корень некоторого элемента K .

Если все фактор-группы в ее композиционном ряду циклические, группа Галуа называется разрешимой , и все элементы соответствующего поля могут быть найдены путем многократного извлечения корней, произведений и сумм элементов из базового поля (обычно Q ) .

Одним из величайших триумфов теории Галуа было доказательство того, что для любого n > 4 существуют многочлены степени n, которые не разрешимы радикалами (это было независимо доказано с использованием аналогичного метода Нильсом Хенриком Абелем за несколько лет до этого, и является теоремой Абеля – Руффини ), а также систематическим способом проверки того, разрешается ли конкретный многочлен в радикалах. Результаты теоремы Абеля-Руффиня из того факта , что при п > 4 симметричной группа S п содержит простую , циклическую, нормальную подгруппу , а именно группу переменной А н .

Неразрешимый пятый пример [ править ]

Для многочлена f ( x ) = x 5 - x - 1 единственный действительный корень x = 1.1673 ... является алгебраическим, но не выражается в терминах радикалов. Остальные четыре корня - это комплексные числа .

Ван дер Варден [10] цитирует многочлен f ( x ) = x 5 - x - 1 . По теореме о рациональном корне у него нет рациональных нулей. Также нет линейных множителей по модулю 2 или 3.

Группа Галуа функции f ( x ) по модулю 2 является циклической функцией порядка 6, поскольку f ( x ) по модулю 2 делится на многочлены порядков 2 и 3, ( x 2 + x + 1) ( x 3 + x 2 + 1) .

f ( x ) по модулю 3 не имеет линейного или квадратичного множителя и, следовательно, неприводима. Таким образом, ее группа Галуа по модулю 3 содержит элемент порядка 5.

Известно [11], что группа Галуа по простому модулю изоморфна подгруппе группы Галуа над рациональными числами. Группа перестановок на 5 объектах с элементами порядков 6 и 5 должна быть симметрической группой S 5 , которая, следовательно, является группой Галуа для f ( x ) . Это один из простейших примеров неразрешимого полинома пятой степени. По словам Сержа Ланга , Эмиль Артин любил этот пример. [12]

Обратная задача Галуа [ править ]

Обратная задача Галуа , чтобы найти расширение поля с заданной группой Галуа.

Пока не указывается также основное поле , проблема не очень сложна, и все конечные группы действительно встречаются как группы Галуа. Чтобы показать это, можно поступить следующим образом. Выберите поле K и конечную группу G . Теорема Кэли утверждает , что G является ( с точностью до изоморфизма) подгруппа симметрической группы S на элементах G . Выберем неопределенные { x α } , по одной для каждого элемента α группы G , и соединим их с K, чтобы получить поле F = K ({ xα }). Внутри F содержится поле L симметричныхрациональных функцийиз{ x α }. Группа Галуа группы F / L - это S согласно основному результату Эмиля Артина. G действует на F ограничения действия S . Еслификсированное полеэтого действия М , то поосновной теореме теории Галуа, группа Галуа F / M является G .

С другой стороны, это открытый вопрос, является ли всякая конечная группа группой Галуа полевого расширения поля Q рациональных чисел. Шафаревич доказал , что всякая разрешимая конечная группа является группой Галуа некоторого расширения Q . Различные люди решили обратную задачу Галуа для избранных неабелевых простых групп . Существование решений было показано для всех, кроме, возможно, одной ( группа Матье M 23 ) из 26 спорадических простых групп. Существует даже многочлен с целыми коэффициентами, группа Галуа которого является группой Монстра .

Неразделимые расширения [ править ]

В упомянутой выше форме, включая, в частности, основную теорему теории Галуа , теория рассматривает только расширения Галуа, которые, в частности, являются сепарабельными. Общие расширения полей можно разделить на отдельные, за которыми следует полностью неотделимое расширение поля . Для чисто неразрывного расширения F / K , существует теория Галуа , когда группа Галуа заменяются векторным пространством отведений , , т.е. K -линейных эндоморфизмы F , удовлетворяющие правило Лейбница. В этой переписке, промежуточное поле Е назначается . Наоборот, подпространство, удовлетворяющие соответствующим дополнительным условиям, отображается в . В предположении , Якобсон (1944) показал , что это устанавливает соответствие один к одному. Условие, наложенное Якобсоном, было удалено Брантнером и Уолдроном (2020) путем предоставления соответствия с использованием понятий производной алгебраической геометрии .

См. Также [ править ]

  • Группа Галуа для дополнительных примеров
  • Основная теорема теории Галуа
  • Дифференциальная теория Галуа для теории Галуа дифференциальных уравнений
  • Теория Галуа Гротендика для обширного обобщения теории Галуа

Примечания [ править ]

  1. ^ a b Стюарт, Ян (1989). Теория Галуа . Чепмен и Холл. ISBN 0-412-34550-1.
  2. ^ Funkhouser 1930
  3. ^ Кардано 1545
  4. ^ Тиньоль, Жан-Пьер (2001). Теория Галуа алгебраических уравнений . World Scientific. стр.  232 -3, 302. ISBN 978-981-02-4541-2.
  5. ^ Стюарт, 3-е изд., Стр. xxiii
  6. ^ Кларк, Аллан (1984) [1971]. Элементы абстрактной алгебры . Курьер. п. 131. ISBN. 978-0-486-14035-3.
  7. ^ Wussing Ганс (2007). Генезис абстрактной концепции группы: вклад в историю происхождения абстрактной теории групп . Курьер. п. 118. ISBN 978-0-486-45868-7.
  8. ^ Шарлау, Винфрид; Дедекинд, Ильзе; Дедекинд, Ричард (1981). Ричард Дедекинд 1831–1981; eine Würdigung zu seinem 150. Geburtstag (PDF) . Брауншвейг: Vieweg. ISBN  9783528084981.
  9. ^ Галуа, Эварист; Нойман, Питер М. (2011). Математические сочинения Эвариста Галуа . Европейское математическое общество. п. 10. ISBN 978-3-03719-104-0.
  10. ^ ван дер Варден, Современная алгебра (английское изд. 1949 г.), Vol. 1, раздел 61, стр.191
  11. Прасолов, В.В. (2004). "5 Теорема Галуа 5.4.5 (а)". Полиномы . Алгоритмы и вычисления в математике. 11 . Springer. С. 181–218. DOI : 10.1007 / 978-3-642-03980-5_5 . ISBN 978-3-642-03979-9.
  12. ^ Лэнг, Серж (1994). Алгебраическая теория чисел . Тексты для выпускников по математике. 110 . Springer. п. 121. ISBN. 9780387942254.

Ссылки [ править ]

  • Артин, Эмиль (1998) [1944]. Теория Галуа . Дувр. ISBN 0-486-62342-4.
  • Беверсдорф, Йорг (2006). Теория Галуа для начинающих: историческая перспектива . Американское математическое общество. DOI : 10.1090 / stml / 035 . ISBN 0-8218-3817-2.
  • Брантнер, Лукас; Уолдрон, Джо (2020), Чисто неразрывная теория Галуа I: Основная теорема , arXiv : 2010.15707
  • Кардано, Джероламо (1545 г.). Artis Magnæ (PDF) (на латыни).
  • Эдвардс, Гарольд М. (1984). Теория Галуа . Springer-Verlag. ISBN 0-387-90980-X. (Оригинальная статья Галуа с обширной историей и комментариями.)
  • Фанкхаузер, Х. Грей (1930). «Краткое изложение истории симметричных функций от корней уравнений». Американский математический ежемесячник . 37 (7): 357–365. DOI : 10.2307 / 2299273 . JSTOR  2299273 .
  • "Теория Галуа" , Математическая энциклопедия , EMS Press , 2001 [1994]
  • Джейкобсон, Натан (1944), "Теория Галуа чисто неотделимых полей экспоненты один", Amer. J. Math. , 66 : 645–648
  • Джейкобсон, Натан (1985). Основы алгебры I (2-е изд.). WH Freeman. ISBN 0-7167-1480-9. (Глава 4 дает введение в теоретико-полевой подход к теории Галуа.)
  • Джанелидзе, Г .; Борсё, Фрэнсис (2001). Теории Галуа . Издательство Кембриджского университета . ISBN 978-0-521-80309-0.(Эта книга знакомит читателя с теорией Галуа Гротендика и некоторыми обобщениями, ведущими к группоидам Галуа .)
  • Ланг, Серж (1994). Алгебраическая теория чисел . Берлин, Нью-Йорк: Springer-Verlag . ISBN 978-0-387-94225-4.
  • Постников, М.М. (2004). Основы теории Галуа . Dover Publications. ISBN 0-486-43518-0.
  • Ротман, Джозеф (1998). Теория Галуа (2-е изд.). Springer. ISBN 0-387-98541-7.
  • Фёлькляйн, Гельмут (1996). Группы как группы Галуа: введение . Издательство Кембриджского университета . ISBN 978-0-521-56280-5.
  • ван дер Варден, Бартель Леендерт (1931). Современная алгебра (на немецком языке). Берлин: Springer.. Английский перевод (2-го исправленного издания): Современная алгебра . Нью-Йорк: Фредерик Ангар. 1949 г. (Позже переиздано на английском языке компанией Springer под названием «Алгебра».)

Внешние ссылки [ править ]

Некоторые онлайн-руководства по теории Галуа доступны по адресу:

  • http://www.math.niu.edu/~beachy/aaol/galois.html
  • http://nrich.maths.org/public/viewer.php?obj_id=1422
  • http://www.jmilne.org/math/CourseNotes/ft.html

Онлайн-учебники на французском, немецком, итальянском и английском языках можно найти по адресу:

  • http://www.galois-group.net/